CORRIGENDUM TO: "QUANTIFIER ELIMINATION IN VALUED ORE MODULES"

LUC BÉLAIR AND FRANÇOISE POINT*

Recall that $A:=K[t ; \sigma, \partial]$ is a skew polynomial ring. Lemma 2.4 in [1] should read as follows (but note there is no effect on the rest of the paper):

Lemma 2.4. For any pair $\left\{q_{1}(t), q_{2}(t)\right\}$ of elements of A, we have the following equivalence in any divisible A-module M :

$$
\operatorname{ann}_{M}\left(q_{2}(t)\right) \subseteq \operatorname{ann}_{M}\left(q_{1}(t)\right) \text { if and only if }
$$

there exists $q_{3}(t)$ such that $\left(a n n_{M}\left(q_{2}(t)\right)=\operatorname{ann}_{M}\left(q_{3}(t)\right)\right.$ and $q_{3}(t)$ divides $\left.q_{1}(t)\right)$.
Moreover, if $q_{1}(t)=q_{2}(t) \cdot r(t)$ and if the cardinality $\left|\operatorname{ann}_{M}\left(q_{1}(t)\right) / \operatorname{ann}_{M}\left(q_{2}(t)\right)\right|$ is finite, then $\left|\operatorname{ann}_{M}\left(q_{1}(t)\right) / \operatorname{ann}_{M}\left(q_{2}(t)\right)\right|=\left|a n n_{M}(r(t))\right|$.
For the convenience of the reader we give a proof below (of the first part), along the lines of Lemma 2.9 and Proposition 2.10 of reference [17] as indicated in [1]. The argument also shows the following: for any pair of elements $\left\{q_{1}(t), q_{2}(t)\right\}$ of A, we have that $q_{2}(t)$ divides $q_{1}(t)$, whenever $\operatorname{ann}_{M}\left(q_{2}(t)\right) \subseteq \operatorname{ann}_{M}\left(q_{1}(t)\right), \operatorname{deg}\left(q_{1}(t)\right)>$ $\operatorname{deg}\left(q_{2}(t)\right)$, and $\operatorname{ann}_{M}(q(t)) \neq\{0\}$ for any $q(t) \notin K$ which divides $q_{2}(t)$ on the right.
Proof of the Lemma. We will proceed by induction on the sum of the degrees of $q_{1}(t)$ and $q_{2}(t)$, assuming that both $q_{1}(t), q_{2}(t)$ are non-zero. Either $a n n_{M}\left(q_{2}(t)\right)=$ $\{0\}$, then take $q_{3}(t)=1$, or $\operatorname{ann}_{M}\left(q_{2}(t)\right) \neq\{0\}$.

So let $0 \neq u \in \operatorname{ann}_{M}\left(q_{2}(t)\right)$ and let $q(t) \in A-\{0\}$ with minimal degree such that $u \cdot q(t)=0$. Note that $\operatorname{deg}(q(t)) \geq 1$. Applying the right Euclidean algorithm, we have that $q_{2}(t)=q(t) \cdot r_{2}(t)$ and since $\operatorname{ann}_{M}\left(q_{2}(t)\right) \subseteq \operatorname{ann}_{M}\left(q_{1}(t)\right)$, that $q_{1}(t)=$ $q(t) \cdot r_{1}(t)$ for some $r_{1}(t), r_{2}(t) \in A-\{0\}$.

Let us show that $\operatorname{ann}_{M}\left(r_{2}(t)\right) \subseteq \operatorname{ann}_{M}\left(r_{1}(t)\right)$. Let $u^{\prime} \in \operatorname{ann}_{M}\left(r_{2}(t)\right)$. Since M is divisible, there exists $u^{\prime \prime}$ such that $u^{\prime \prime} \cdot q(t)=u^{\prime}$. So $u^{\prime \prime} \in \operatorname{ann}_{M}\left(q_{2}(t)\right) \subseteq$ $\operatorname{ann}_{M}\left(q_{1}(t)\right)$ and so $0=u^{\prime \prime} \cdot q(t) \cdot r_{1}(t)=u^{\prime} \cdot r_{1}(t)$. So we may apply induction to the pair $\left(r_{1}(t), r_{2}(t)\right)$ since $\operatorname{deg}\left(r_{1}(t)\right)+\operatorname{deg}\left(r_{2}(t)\right)<\operatorname{deg}\left(q_{1}(t)\right)+\operatorname{deg}\left(q_{2}(t)\right)$. Therefore, there exists $r_{3}(t)$ with $\operatorname{ann}_{M}\left(r_{3}(t)\right)=a n n_{M}\left(r_{2}(t)\right)$ and $r_{3}(t)$ divides $r_{1}(t)$. It remains to note that $a n n_{M}\left(q(t) \cdot r_{3}(t)\right)=a n n_{M}\left(q_{2}(t)\right)$. So let $u \in$ $\operatorname{ann}_{M}\left(q(t) \cdot r_{3}(t)\right)$, then $u \cdot q(t) \in \operatorname{ann}_{M}\left(r_{2}(t)\right)$ and so $u \in \operatorname{ann}_{M}\left(q_{2}(t)\right)$. Conversely let $u \in \operatorname{ann}_{M}\left(q_{2}(t)\right)$, so $u \cdot q(t) \in \operatorname{ann}_{M}\left(r_{2}(t)\right)$. Since $\operatorname{ann}_{M}\left(r_{2}(t)\right)=a n n_{M}\left(r_{3}(t)\right)$, we have $u \cdot q(t) \cdot r_{3}(t)=0$.

[^0]
[^0]: Received June 17, 2011.
 *Research Director at the "Fonds de la Recherche Scientifique FNRS-FRS".

