A CONSTRUCTIVE LOOK AT THE COMPLETENESS OF THE SPACE $\mathscr{D}(\mathbb{R})$

HAJIME ISHIHARA AND SATORU YOSHIDA

Abstract. We show, within the framework of Bishop's constructive mathematics, that (sequential) completeness of the locally convex space $\mathscr{D}(\mathbb{R})$ of test functions is equivalent to the principle BD- \mathbb{N} which holds in classical mathematics, Brouwer's intuitionism and Markov's constructive recursive mathematics, but does not hold in Bishop's constructivism.

§1. Introduction. The space $\mathscr{D}(\mathbb{R})$ of all infinitely differentiable functions $f:\mathbb{R}\to\mathbb{R}$ with compact support together with a locally convex structure defined by the seminorms

$$p_{\alpha,\beta}(f) := \sup_{n} \max_{l \le \beta(n)} \sup_{|x| \ge n} 2^{\alpha(n)} |f^{(l)}(x)| \quad (\alpha,\beta \in \mathbb{N} \to \mathbb{N})$$

is an important example of a locally convex space. Classically the space $\mathscr{D}(\mathbb{R})$ —the space of test functions—is complete, but it has not been known whether the constructive completion of $\mathscr{D}(\mathbb{R})$, whose explicit description was given in [1, Appendix A] and [2, Chapter 7, Notes], coincides with the original space or not. This leads us to a difficulty in developing the theory of distributions in Bishop's constructive mathematics; see [1, Appendix A] and [2, Chapter 7, Notes] for more details.

The aim of our paper is to find a principle which is necessary and sufficient to establish the completeness of $\mathscr{D}(\mathbb{R})$. Although it is formulated in the setting of informal Bishop-style constructive mathematics, the proofs could easily be formalized in a system based on intuitionistic finite-type arithmetics HA^{ω} [8, Chapter 1], [9, Chapter 9]; see also [5].

A subset A of \mathbb{N} is said to be *pseudobounded* if for each sequence $\{a_n\}_n$ in A,

$$\lim_{n\to\infty}\frac{a_n}{n}=0.$$

A bounded subset of \mathbb{N} is pseudobounded. The converse for countable sets holds in in classical mathematics, intuitionistic mathematics and constructive recursive mathematics of Markov's school; see [6]. However, a natural recursivisation of the following principle is independent of Heyting arithmetic [4].

BD- \mathbb{N} : Every countable pseudobounded subset of \mathbb{N} is bounded.

BD- \mathbb{N} has been proved to be equivalent to the following theorems [6, 7, 4]; Banach's inverse mapping theorem; the open mapping theorem; the closed graph theorem;

Received February 12, 2002; revised June 17, 2002.