ISOLATION AND LATTICE EMBEDDINGS

GUOHUA WU

Abstract

Say that $(\boldsymbol{a}, \boldsymbol{d})$ is an isolation pair if \boldsymbol{a} is a c.e. degree, \boldsymbol{d} is a d.c.e. degree, $\boldsymbol{a}<\boldsymbol{d}$ and \boldsymbol{a} bounds all c.e. degrees below \boldsymbol{d}. We prove that there are an isolation pair $(\boldsymbol{a}, \boldsymbol{d})$ and a c.e. degree \boldsymbol{c} such that \boldsymbol{c} is incomparable with $\boldsymbol{a}, \boldsymbol{d}$, and \boldsymbol{c} cups \boldsymbol{d} to \mathbf{o}^{\prime}, caps \boldsymbol{a} to \mathbf{o}. Thus, $\left\{\mathbf{o}, \boldsymbol{c}, \boldsymbol{d}, \mathbf{o}^{\prime}\right\}$ is a diamond embedding, which was first proved by Downey in [9]. Furthermore, combined with Harrington-Soare continuity of capping degrees, our result gives an alternative proof of N_{5} embedding.

$\S 1$. Introduction. A set $A \subseteq \omega$ is computably enumerable (c.e. for short), if A can be listed effectively. Say that $D \subseteq \omega$ is d.c.e. if D is the difference of two c.e. sets. A Turing degree is c.e. (d.c.e.) if it contains a c.e. (d.c.e.) set. Let \boldsymbol{R} be the set of all c.e. degrees and \boldsymbol{D}_{2} be the set of all d.c.e. degrees. Since any c.e. set is d.c.e., $\boldsymbol{R} \subseteq \boldsymbol{D}_{2}$. Say that a degree \boldsymbol{d} is properly d.c.e. if \boldsymbol{d} contains a d.c.e. set, but contains no c.e. sets. Cooper [3] proved the existence of properly d.c.e. degrees. Thus,

Theorem 1 (Cooper [3]). $\boldsymbol{R} \subset \boldsymbol{D}_{2}$.
In [5], Cooper, Lempp and Watson proved that the properly d.c.e. degrees are dense in the c.e. degrees. The early investigation of the structure \boldsymbol{D}_{2} shows that \boldsymbol{D}_{2} shares many properties with \boldsymbol{R}. For example, Lachlan noticed that any nonzero d.c.e. degree bounds a nonzero c.e. degree, and so the downwards density holds in \boldsymbol{D}_{2}. Based on this observation, Jockusch pointed out that \boldsymbol{D}_{2} is not complemented. The first two structural differences between \boldsymbol{D}_{2} and \boldsymbol{R} are obtained by Arslanov and Downey:

Theorem 2 (Arslanov's Cupping Theorem [1]). Every nonzero d.c.e. degree cups to \mathbf{o}^{\prime} with an incomplete d.c.e. degree.
Theorem 3 (Downey's Diamond Embedding Theorem [9]). There are two d.c.e. degrees $\boldsymbol{d}_{1}, \boldsymbol{d}_{2}$ such that \boldsymbol{d}_{1} cups \boldsymbol{d}_{2} to \mathbf{o}^{\prime} and caps \boldsymbol{d}_{2} to $\mathbf{0}$.

In [8], Ding and Qian proved that one of $\boldsymbol{d}_{1}, \boldsymbol{d}_{2}$ in Downey's diamond can be c.e.. Indeed, they proved the following lattice embedding:

Theorem 4 (Ding and Qian [8]). There are two c.e. degrees $\boldsymbol{a}<\boldsymbol{b}$ and a d.c.e. degree \boldsymbol{d} such that \boldsymbol{d} cups \boldsymbol{a} to \mathbf{o}^{\prime} and caps \boldsymbol{b} to \mathbf{o}. Thus, $\left\{\mathbf{o}, \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{d}, \mathbf{o}^{\prime}\right\}$ is an N_{5} embedding.

Obviously, $\left\{\mathbf{o}, \boldsymbol{a}, \boldsymbol{d}, \mathbf{o}^{\prime}\right\}$ in Theorem 4 is a diamond embedding.

[^0]
[^0]: Received April 24, 2001; revised August 28, 2001.
 This project is supported by the New Zealand Marsden Fund. The author would like to thank his supervisor, Prof. Rod Downey, for his insightful suggestions.

