0[#] AND INNER MODELS

SY D. FRIEDMAN*

§1. In this paper we examine the cardinal structure of inner models that satisfy GCH but do not contain $0^{\#}$. We show, assuming that $0^{\#}$ exists, that such models necessarily contain Mahlo cardinals of high order, but without further assumptions need not contain a cardinal κ which is κ -Mahlo. The principal tools are the Covering Theorem for L and the technique of reverse Easton iteration.

Let *I* denote the class of Silver indiscernibles for *L* and $\langle i_{\alpha} | \alpha \in \text{ORD} \rangle$ its increasing enumeration. Also fix an inner model *M* of GCH not containing $0^{\#}$ and let ω_{α} denote the ω_{α} of the model $M[0^{\#}]$, the least inner model containing *M* as a submodel and $0^{\#}$ as an element.

THEOREM 1.1. Suppose that α is greater than 0. (a) $i_{\omega_1 \cdot \alpha}$ is an *M*-cardinal, and unless α is a limit ordinal of countable $M[0^{\#}]$ -cofinality, so is its *L*-cardinal successor.

(b) If β is less than $i_{\omega_1^{L[0^{\#}]},\omega}$ then there is a proper inner model M of $L[0^{\#}]$ satisfying

GCH in which the only ordinals between ω and β which are *M*-cardinals are those which are required to be by part (*a*).

It follows from (a) that for finite n, ω_{2n+1}^M is at most $i_{\omega_1 \cdot (n+1)}$ and that ω_{2n+2}^M is at most the *L*-cardinal successor to $i_{\omega_1 \cdot (n+1)}$. It follows from (b) that these bounds are optimal. The restriction in (b) on β cannot be weakened, as otherwise an increasing ω -sequence of Silver indiscernibles, and hence $0^{\#}$ itself, would belong to M. In fact the supremum of the $i_{\omega_1 \cdot n}$'s must be large in M:

THEOREM 1.2. (a) $i_{\omega_1 \cdot \alpha}$ is inaccessible in M for limit α .

(b) If β is less than $i_{\omega_1^{[0^{\#}]} \cdot \omega \cdot \omega}$ then there is a proper inner model M of $L[0^{\#}]$ satisfying *GCH* in which the only ordinals less than β which are M-inaccessible are those which are required to be by part (a).

It follows from (a) that for finite *n*, the *n*-th *M*-inaccessible is at most $i_{\omega_1 \cdot \omega \cdot n}$. It follows from (b) that these bounds are optimal. As before, the restriction in (b) on β cannot be weakened, as otherwise 0[#] would belong to *M*.

We can also obtain Mahlo cardinals of high order in M. Define: κ is 0-Mahlo (or simply Mahlo) iff the set of inaccessible $\bar{\kappa} < \kappa$ is stationary in κ , κ is $\alpha + 1$ -Mahlo iff the set of α -Mahlo $\bar{\kappa} < \kappa$ is stationary in κ , and for limit λ , κ is λ -Mahlo iff κ is α -Mahlo for every $\alpha < \lambda$.

© 2002, Association for Symbolic Logic 0022-4812/02/6703-0004/\$1.90

Received March 6, 2001; revised August 28, 2001.

¹⁹⁹¹ Mathematics Subject Classification. 03E35, 03E45, and 03E55.

Key words and phrases. Descriptive set theory, large cardinals, inner models.

^{*}We wish to thank Balliol College, Oxford for its generous hospitality during the month of February, 2000, when the first draft of this paper was written.