SPLITTING PROPERTIES OF n-C.E. ENUMERATION DEGREES

I. SH. KALIMULLIN

Abstract. It is proved that if $1 < m < 2p \le n$ for some integer *p* then the elementary theories of posets of *m*-c.e. and *n*-c.e. e-degrees are distinct. It is proved also that the structures $\langle \mathscr{D}_{2n}, \le, P \rangle$ and $\langle \mathscr{D}_{2n}, \le, P \rangle$ are not elementary equivalent where *P* is the predicate P(a) = "a is a Π_1^0 e-degree".

§1. Introduction. A set A is enumeration reducible to a set B (in symbols: $A \leq_e B$), if there is an algorithm for enumerating A given any enumeration of B. Namely (see e.g. [1]), if there exists some computably enumerable set W, such that

 $A = \{ x : (\exists u) [\langle x, u \rangle \in W \& D_u \subseteq B] \}$

where D_u is the finite set with canonical index u (in the following we will often identify finite sets with their canonical indices). Thus, each c. e. set W can be viewed as an operator (called an *enumeration operator*), associating to each set B, the set A which is obtained from B as above. The degree structure originated by this reducibility is the structure of the *enumeration degrees*. (In the following, we will write e-reducible, e-operator, e-degree for enumeration reducible, enumeration operator, enumeration degree, respectively. We will also denote by $\deg_e(A)$ the e-degree of a set A.)

In this paper we study the structure of the *n*-c.e. e-degrees (where $n \ge 2$). In fact, for each $n \ge 2$, the *n*-c.e. e-degrees form an upper semilattice \mathcal{D}_n with least element θ (the e-degree of the c.e. sets) and greatest element θ' (the e-degree of \overline{K} , where K is any creative set). Arslanov, Kalimullin and Sorbi proved (see [2]) that every nonzero *n*-c.e. e-degree strictly bounds some nonzero 3-c.e. e-degree. Hence, in each \mathcal{D}_n there is no minimal e-degree. Moreover, by Corollary 2, every nonzero *n*-c.e. e-degree nontrivially splits.

It is known ([3]) that the 2-c.e. e-degrees are isomorphic to the c.e. Turing degrees. Note that by [7] it is the unique example of an isomorphism between \mathscr{D}_n (for some $n \ge 2$) and the *m*-c.e. Turing degrees (for some $m \ge 1$). By Corollary 1 (see below) there is an elementary difference at the Σ_2 -level (in the language with signature \le) between \mathscr{D}_n (n > 2) and \mathscr{D}_2 .

Downey [5] conjectured that for $m \ge 2$ the structures of the *m*-c.e. Turing degrees are pairwise elementarily equivalent. In the context of the e-degrees it is natural to ask whether the theories of the *n*-c.e. e-degrees (for n > 2) pairwisely coincide. The

© 2002, Association for Symbolic Logic 0022-4812/02/6702-0004/\$2.00

Received January 18, 2000; revised February 7, 2001.

Partially supported by RFBR Grant 99-01-00174