THE JOURNAL OF SYMBOLIC LOGIC Volume 67, Number 1, March 2002

A CLASSIFICATION OF INTERSECTION TYPE SYSTEMS

M. W. BUNDER

In honour of Roger Hindley on his 60th birthday.

Abstract. The first system of intersection types, Coppo and Dezani [3], extended simple types to include intersections and added intersection introduction and elimination rules $((\land I) \text{ and } (\land E))$ to the type assignment system. The major advantage of these new types was that they were invariant under β -equality, later work by Barendregt, Coppo and Dezani [1], extended this to include an (η) rule which gave types invariant under $\beta\eta$ -reduction.

Urzyczyn proved in [6] that for both these systems it is undecidable whether a given intersection type is empty. Kurata and Takahashi however have shown in [5] that this emptiness problem is decidable for the sytem including (η) , but without $(\wedge I)$.

The aim of this paper is to classify intersection type systems lacking some of $(\wedge I)$, $(\wedge E)$ and (η) , into equivalence classes according to their strength in typing λ -terms and also according to their strength in possessing inhabitants.

This classification is used in a later paper to extend the above (un)decidability results to two of the five inhabitation-equivalence classes. This later paper also shows that the systems in two more of these classes have decidable inhabitation problems and develops algorithms to find such inhabitants.

§1. The system $\lambda \wedge$ and subsystems.

1.1. DEFINITION (Types).

(i) Type variables a, b, c, \ldots , and ω , the universal type, are types.

(ii) If α and β are types so are $(\alpha \rightarrow \beta)$ and $(\alpha \land \beta)$.

1.2. DEFINITION (TA (type assignment) statements). If α is a type and M a λ -term, $M : \alpha$ is a TA-statement.

1.3. DEFINITION (TA-judgements). If $\Delta = \{x_1 : \alpha_1, \dots, x_n : \alpha_n\}$ is a set of TA-statements and $M : \alpha$ is a TA-statement then $\Delta \vdash M : \alpha$ is a TA-judgement.

1.4. DEFINITION (The type assignment system $TA_{\lambda}(\wedge, \omega)$ or $\lambda \wedge \omega$).

Axiom scheme (ω)	$\vdash M: \omega$	
(Var)	if $x : \alpha \in \varDelta$,	$\varDelta \vdash x : \alpha$

Received January 11, 2000; revised October 24, 2000; accepted April 18, 2001.

© 2002, Association for Symbolic Logic 0022-4812/02/6701-0024/\$2.60

This work was supported by Fondi Per Professori Visitatori dell Universitate di Torino. The author wishes to thank Mariangiola Dezani for her help with this project.