EMBEDDING FINITE LATTICES INTO THE Σ^0_2 ENUMERATION DEGREES

STEFFEN LEMPP† AND ANDREA SORBI‡

Abstract. We show that every finite lattice is embeddable into the Σ_2^0 enumeration degrees via a lattice-theoretic embedding which preserves 0 and 1.

§1. Introduction. Informally, a set A is enumeration reducible to a set B if there is some effective procedure for enumerating A, given any enumeration of B. This informal notion of reducibility can be formalized using the notion of enumeration operator. Let $\{W_i\}_{i\in\omega}$ be the standard listing of the computably enumerable (c.e.) sets. With every c.e. set W_i , one can associate a mapping $\Phi_i: P(\omega) \to P(\omega)$ (where $P(\omega)$ is the power set of the set of natural numbers ω) by letting, for every B.

$$\Phi_i^B = \{x : (\exists u)[\langle x, u \rangle \in W_i \& D_u \subseteq B]\}$$

(where $\langle \cdot, \cdot \rangle$ is the usual pairing function, providing a computable one-one bijection of ω^2 onto ω ; and D_u is the finite set with canonical index u, i.e., D_u denotes the finite set D for which $u = \sum_{x \in D} 2^x$; see e.g., [17]. In the following, finite sets will be often identified with their canonical indices). A mapping $\Phi: P(\omega) \to P(\omega)$ is called an *enumeration operator* (or simply an *e-operator*) if $\Phi = \Phi_i$ for some i.

Given sets of numbers A and B, we say that A is *enumeration reducible* (or simply *e-reducible*) to B if $A = \Phi^B$ for some e-operator Φ . This reducibility is easily seen to be a partial preordering relation, which will be denoted by the symbol \leq_e .

The degree structure induced by \leq_e is the structure of the *enumeration degrees* (simply e-degrees), denoted by \mathfrak{D}_e . The e-degree of a set X will be denoted by $\deg_e(X)$. \mathfrak{D}_e is in fact an upper semilattice with least element θ_e , with $\theta_e = \deg_e(W)$ where W is any c.e. set. It is known (Gutteridge, see also [6]) that \mathfrak{D}_e does not have minimal elements (although the structure is not dense, see [8]; Calhoun and Slaman in [5], have shown that there exist Π_2^0 e-degrees a < b such that b is a minimal cover of a). An important substructure of \mathfrak{D}_e is given by the \mathfrak{D}_2^0 e-degrees, i.e., the e-degrees of the \mathfrak{D}_2^0 sets. Let \mathfrak{S} denote the structure of the e-degrees of the \mathfrak{D}_2^0 sets. Cooper [7] shows that $\mathfrak{S} = \mathfrak{D}_e(\leq_e \theta'_e)$ where $\theta'_e = \deg_e(\overline{K})$, \overline{K} being the complement of the halting set (for a definition of the jump operation on the e-degrees, see [7] and [13]). Cooper [7] shows that \mathfrak{S} is dense.

Received October 2, 2000.

[†]Partially supported by NSF grant DMS-9504474.

[‡]Partially supported by MURST 60%.