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EMBEDDING FINITE LATTICES INTO THE Σ02 ENUMERATION

DEGREES

STEFFEN LEMPP† AND ANDREA SORBI‡

Abstract. We show that every finite lattice is embeddable into the Σ02 enumeration degrees via a lattice-

theoretic embedding which preserves 0 and 1.

§1. Introduction. Informally, a set A is enumeration reducible to a set B if there
is some effective procedure for enumerating A, given any enumeration of B . This
informal notion of reducibility can be formalized using the notion of enumera-
tion operator. Let {Wi}i∈ù be the standard listing of the computably enumerable
(c.e.) sets. With every c.e. setWi , one can associate a mapping Φi : P(ù)→ P(ù)
(where P(ù) is the power set of the set of natural numbers ù) by letting, for every
B ,

ΦBi = {x : (∃u)[〈x, u〉 ∈Wi & Du ⊆ B]}

(where 〈·, ·〉 is the usual pairing function, providing a computable one-one bijection
of ù2 onto ù; and Du is the finite set with canonical index u, i.e., Du denotes the
finite set D for which u =

∑
x∈D 2

x ; see e.g., [17]. In the following, finite sets will
be often identified with their canonical indices). A mapping Φ : P(ù) → P(ù) is
called an enumeration operator (or simply an e-operator) if Φ = Φi for some i .
Given sets of numbersA and B , we say thatA is enumeration reducible (or simply
e-reducible) to B if A = ΦB for some e-operator Φ. This reducibility is easily seen
to be a partial preordering relation, which will be denoted by the symbol ≤e .
The degree structure induced by ≤e is the structure of the enumeration degrees
(simply e-degrees), denoted by De . The e-degree of a set X will be denoted by
dege(X ). De is in fact an upper semilattice with least element 0e , with 0e = dege(W )
where W is any c.e. set. It is known (Gutteridge, see also [6]) that De does not
have minimal elements (although the structure is not dense, see [8]; Calhoun and
Slaman in [5], have shown that there exist Π02 e-degrees a < b such that b is a
minimal cover of a). An important substructure ofDe is given by the Σ

0
2 e-degrees,

i.e., the e-degrees of the Σ02 sets. Let S denote the structure of the e-degrees of
the Σ02 sets. Cooper [7] shows that S = De(≤e 0

′
e) where 0

′
e = dege(K), K being

the complement of the halting set (for a definition of the jump operation on the
e-degrees, see [7] and [13]). Cooper [7] shows that S is dense.
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