The research presented in this paper was motivated by our aim to study a problem due to J. Bourgain [3]. The problem in question concerns the uniform boundedness of the classical separation rank of the elements of a separable compact set of the first Baire class. In the sequel we shall refer to these sets (separable or non-separable) as Rosenthal compacta and we shall denote by $\alpha(f)$ the separation rank of a real-valued function f in $B_1(X)$, with X a Polish space. Notice that in [3], Bourgain has provided a positive answer to this problem in the case of K satisfying $K = K \setminus C(X)$ with X a compact metric space. The key ingredient in Bourgain’s approach is that whenever a sequence of continuous functions pointwise converges to a function f, then the possible discontinuities of the limit function reflect a local ℓ^1-structure to the sequence $(f_n)_n$. More precisely the complexity of this ℓ^1-structure increases as the complexity of the discontinuities of f does.

This fruitful idea was extensively studied by several authors (c.f. [5], [7], [8]) and for an exposition of the related results we refer to [1]. It is worth mentioning that A.S. Kechris and A. Louveau have invented the rank $r_{ND}(f)$ which permits the link between the c_0-structure of a sequence $(f_n)_n$ of uniformly bounded continuous functions and the discontinuities of its pointwise limit. Rosenthal’s c_0-theorem [11] and the c_0-index theorem [2] are consequences of this interaction.

Passing to the case where either $(f_n)_n$ are not continuous or X is a non-compact Polish space, this nice interaction is completely lost. Easy examples show that there exist sequences of continuous functions on \mathbb{R} pointwise convergent to zero and in the same time they are equivalent to the ℓ^1 basis. Also there are sequences $(f_n)_n$ of Baire-1 functions, equivalent to the summing basis of c_0. pointwise convergent to a Baire-2 function. Thus if we wish to preserve the main scheme, invented by Bourgain, namely to pass from the elements of the separable Rosenthal compactum to a well-founded tree related to the dense sequence $(f_n)_n$, this has to take into account not only the finite subsets of $(f_n)_n$ but also the points of the Polish space X.

This is the key observation on which we have based our approach. Thus for every D subset of \mathbb{R}^X we associate a tree $\mathcal{T}((f_z)_{z \in D}, a, b)$ where $(f_z)_{z \in D}$ is a well-ordering of D and $a < b$ are reals. The elements of the tree are of the form (u, T) with u a finite increasing subsequence of $(f_z)_{z \in D}$ and T a finite dyadic tree in X, where the length of u and the height of T are the same and which share certain properties.