THE JOURNAL OF SYMBOLIC LOGIC Volume 70, Number 1, March 2005

MODEL COMPLETENESS OF O-MINIMAL STRUCTURES EXPANDED BY DEDEKIND CUTS

MARCUS TRESSL

§1. Introduction. Let M be a totally ordered set. A (Dedekind) cut p of M is a couple (p^L, p^R) of subsets p^L, p^R of M such that $p^L \cup p^R = M$ and $p^L < p^R$, i.e., a < b for all $a \in p^L$, $b \in p^R$. In this article we are looking for model completeness results of o-minimal structures M expanded by a set p^L for a cut p of M. This means the following. Let M be an o-minimal structure in the language \mathcal{L} and suppose M is model complete. Let \mathcal{D} be a new unary predicate and let p be a cut of (the underlying ordered set of) M. Then we are looking for a natural, definable expansion of the $\mathcal{L}(\mathcal{D})$ -structure (M, p^L) which is model complete.

The first result in this direction is a theorem of Cherlin and Dickmann (cf. [Ch-Dic]) which says that a real closed field expanded by a convex valuation ring has a model complete theory. This statement translates into the cuts language as follows. If Z is a subset of an ordered set M we write Z^+ for the cut p with $p^R = \{a \in M \mid a > Z\}$ and Z^- for the cut q with $q^L = \{a \in M \mid a < Z\}$. We call Z^+ the **upper edge** of Z and Z^- the **lower edge** of Z. Then the Cherlin-Dickmann theorem says that (M, p^L) is model complete if p is the upper edge of a convex valuation ring of a real closed field M. This theorem has been generalized by van den Dries and Lewenberg in [vdD-Lew], for o-minimal expansions M of real closed fields and so called T-convex subrings of M (where T is the theory of M; a T-convex valuation ring is the convex hull of an elementary restriction of M, cf. 4.3).

If p is not an edge of a convex valuation ring of a real closed field M then one can show that the $\mathscr{L}(\mathscr{D})$ -theory (where \mathscr{L} is the language of ordered rings) of (M, p^L) is not model complete (cf. [T1], §16). So for model completeness we actually have to extend the language $\mathscr{L}(\mathscr{D})$.

We do the following. Let M be again an o-minimal expansion of a real closed field and let p be a cut of M. Let $G(p) := \{a \in M \mid a + p = p\}$, where $a + p := (a + p^L, a + p^R)$. G(p) is a convex subgroup of $(M, +, \leq)$, called the invariance group of p. Moreover $V(p) := \{b \in M \mid b \cdot G(p) \subseteq G(p)\}$ is a convex valuation ring of M, called the invariance ring of p. Suppose there is a T-convex valuation ring V of M, such that V(p) is definable in (M, V) (this is no restriction if M is a pure real closed field). Then our results 3.8 and 7.4 imply that we get model completeness of $Th(M, p^L)$ if we expand the language $\mathscr{L}(\mathscr{D})$ by a unary predicate

© 2005, Association for Symbolic Logic 0022-4812/05/7001-0002/\$4.20

Received March 9, 2001; revised January 11, 2004.