IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS?

LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

The Euclidean algorithm on the natural numbers $\mathbb{N}=\{0,1, \ldots\}$ can be specified succinctly by the recursive program

$$
\varepsilon: \quad \operatorname{gcd}(a, b)=\left\{\begin{array}{ll}
b, & \text { if } \operatorname{rem}(a, b)=0, \\
\operatorname{gcd}(b, \operatorname{rem}(a, b)), & \text { otherwise }
\end{array} \quad(a \geq b \geq 1)\right.
$$

where $\operatorname{rem}(a, b)$ is the remainder in the division of a by b, the unique natural number r such that for some natural number q,

$$
\begin{equation*}
a=b q+r \quad(0 \leq r<b) \tag{1}
\end{equation*}
$$

It is an algorithm from (relative to) the remainder function rem, meaning that in computing its time complexity function $c_{\varepsilon}(a, b)$, we assume that the values rem (x, y) are provided on demand by some "oracle" in one "time unit". It is easy to prove that

$$
c_{\varepsilon}(a, b) \leq 3 \log _{2} a \quad(a>b>1) .
$$

Much more is known about $c_{\varepsilon}(a, b)$, but this simple-to-prove upper bound suggests the proper formulation of the Euclidean's (worst case) optimality among its peers-algorithms from rem:

Conjecture. If an algorithm α computes $\operatorname{gcd}(x, y)$ from rem with time complexity $c_{\alpha}(x, y)$, then there is a rational number $r>0$ such that for infinitely many pairs $a>b>1, c_{\alpha}(a, b)>r \log _{2} a$.

Our main aim here is to prove the following relevant result:
Theorem A. If a recursive program α decides the coprimeness relation $x \perp y$ from $=,<,+,-, \mathrm{iq}$ and rem, then for infinitely many coprime pairs $a>b>1$,

$$
\begin{equation*}
c_{\alpha}(a, b)>\frac{1}{10} \log _{2} \log _{2} a \tag{2}
\end{equation*}
$$

Received December 22, 2003; revised April 22, 2004.
Van den Dries acknowledges support from NSF grant DMS 01-00979. Moschovakis acknowledges support from the Graduate Program in Algorithms and Computation (МПЛА) and University of Athens Grant 70/4/5633.

