SCATTERING FOR NONLINEAR SYMMETRIC HYPERBOLIC SYSTEMS

By

Atsushi SATOH

0 Introduction

In this paper we shall investigate the Cauchy problem and scattering for the following nonlinear symmetric hyperbolic system of first order

$$E(u)\frac{\partial u}{\partial t} = \sum_{j=1}^{n} A_j(u)\frac{\partial u}{\partial x_j} + F(t, x, u), \qquad (0.1)$$

where $x \in \mathbb{R}^n$, $t \in \mathbb{R}^1$, u = u(t, x) is a real $m \times 1$ matrix. E(u) is an $m \times m$ matrix which is real, symmetric and positive definite, $A_j(u)$ (j = 1, ..., n) are $m \times m$ matrices which are real and symmetric. Moreover we assume that $E(u), A_j(u), F(u) \in C^{\infty}(\mathbb{R}^m)$.

First, in order to obtain the existence of the time global solution of the Cauchy problem for the equation (0.1), we consider the following Cauchy problem for a linear symmetric hyperbolic system of first order with constant coefficients;

$$\begin{cases} E^{0} \frac{\partial u^{0}}{\partial t} = \sum_{j=1}^{n} A_{j}^{0} \frac{\partial u^{0}}{\partial x_{j}}, \\ u^{0}(0, x) = \varphi_{0}(x), \end{cases}$$
(0.2)

where $x \in \mathbb{R}^n$, $t \in \mathbb{R}^1$, $u^0 = u^0(t, x)$ and $\varphi_0(x)$ are real $m \times 1$ matrices and $\varphi_0(x) \in C_0^{\infty}(\mathbb{R}^n)$. E^0 is a $m \times m$ matrix which is real, symmetric and positive definite. A_j^0 (j = 1, ..., n) are $m \times m$ matrices which are real, symmetric and constant. We assume that the eigenvalues $\lambda_j(\xi)$ of $\sum_{j=1}^n A_j^0 \xi_j$ are non zero, real, distinct and their slowness surfaces are strictly convex. S. Lucente and G. Ziliotti [1] obtain the decay estimate of the solutions of the Cauchy problem (0.2) as $t \to \pm \infty$. By using their estimate and the existence of the local solution (cf: [3]),

Received December 8, 2003. Revised March 17, 2005.