ON PRIMES IN ARITHMETIC PROGRESSIONS

In honorem Saburô Uchiyama annos LXX nati

By
Hiroshi Mikawa

1. Introduction

The Dirichlet theorem says that, for any coprime integers q and a, there are infinitely many primes which are congruent to a modulo q. See [16, Kap. IV], for instance. Then, for $(q, a)=1$, let $P(q, a)$ be the least prime in an arithmetic progression $p \equiv a(\bmod q)$. The extended Riemann hypothesis gives that

$$
\begin{equation*}
P(q, a) \ll q^{2+\varepsilon} \tag{1}
\end{equation*}
$$

for any $\varepsilon>0$. However it is conjectured that this exponent 2 could be replaced by 1 .

The Linnik theorem unconditionally shows that

$$
P(q, a) \ll q^{L}
$$

with some absolute constant L, vide [16, Kap. X]. Many works have been done to obtain an explicit value of this Linnik constant. The best known result is $L=5.5$ due to D. R. Heath-Brown [14].

The Bombieri-Vinogradov theorem, see [7, §28], has the same power as the extended Riemann hypothesis in some sense. Indeed, it yields (1) for any given $a \neq 0$ and almost all q. In 1980 E. Fouvry and H. Iwaniec [10, 11] made a significant step beyond the extended Riemann hypothesis. Their ideas have been surprisingly developed by E. Fouvry [8, 9] and E. Bombieri, J. B. Friedlander and H. Iwaniec [4, 5]. In particular, it follows from [5] that, for any fixed $a \neq 0$ and almost all q,

$$
\begin{equation*}
P(q, a) \ll q^{2-\delta} \tag{2}
\end{equation*}
$$

where $0<\delta=\delta(q) \rightarrow 0$ as $q \rightarrow \infty$.

[^0]
[^0]: Received December 3, 1999.

