CERTAIN CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM

By

Hyang Sook Kim, Jong-Hoon Kim and Yong-Soo Pyo

§ 1. Introduction

A complex *n*-dimensional Kähler manifold of constant holomorphic sectional curvature c is called a *complex space form*, which is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space P_nC , a complex Euclidean space C^n or a complex hyperbolic space H_nC , according as c > 0, c = 0 or c < 0.

In this paper, we consider a real hypersurface M in $M_n(c)$. Typical examples of M in P_nC are the six model spaces of type A_1, A_2, B, C, D and E (cf. [10]), and the ones of M in H_nC are the four model spaces of type A_0, A_1, A_2 and B (cf. [1]), which are all given as orbits under certain Lie subgroups of the group consisting of all isometries of P_nC or H_nC . Denote by (ϕ, ξ, η, g) the almost contact metric structure of M induced from the almost complex structure of $M_n(c)$ and A the shape operator of M. Eigenvalues and einvectors of A are called principal curvatures and principal vectors, respectively.

Many differential geometers have studied M from various points of view. In particular, Berndt [1] and Takagi [10] investigated the homogeneity of M. According to Takagi's classification theorem and Berndt's one, the principal curvatures and their multiplicities of homogeneous real hypersurfaces in $M_n(c)$ are given. Moreover, it is very interesting to characterize homogeneous real hypersurfaces of $M_n(c)$. There are many characterizations of homogeneous ones of type A since these examples have a lot of beautiful geometric properties, where $type\ A$ means type A_1 or A_2 in P_nC and type A_0 , A_1 or A_2 in H_nC . Okumura [8] and Montiel-Romero [7] proved the fact in P_nC and H_nC , respectively that M

The third author is partially supported by Pukyung University Research Foundation (1997). Received July 6, 1998.

Revised October 26, 1998.