ON THE FIRST EIGENVALUE OF NON-ORIENTABLE CLOSED SURFACES

By

Katsuhiro Yosнил

0. Introduction

Let (M,g) be a 2-dimensional non-orientable closed Riemannian manifold. We study the spectrum of the Laplacian for functions on (M,g). We express it by

Spec $(M, g) = \{0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \lambda_3 \le \cdots\}.$

Let (\tilde{M}, \tilde{g}) be the orientable Riemannian double cover of (M, g). Our interest is what properties are preserved between (M, g) and (\tilde{M}, \tilde{g}) . The positive first eigenvalue $\lambda_1(M, g)$ has many geometric informations. We have interests in the influences for the positive first eigenvalue by taking the Riemannian double cover. Generally we have $\lambda_1(M, g) \ge \lambda_1(\tilde{M}, \tilde{g})$. So we study the difference between $\lambda_1(M, g)$ and $\lambda_1(\tilde{M}, \tilde{g})$. Especially we find the cases that $\lambda_1(M, g) = \lambda_1(\tilde{M}, \tilde{g})$ holds good.

It is well-known (cf. [9]) that 2-dimensional closed manifolds are classified as follows.

The Classification Theorem of Closed Surfaces. A closed surface is homeomorphic to one of the following spaces.

$$S^2, T^2, \#^n T^2 \ (n \ge 2)$$
: orientable

 RP^2 , $\#^n RP^2$ $(n \ge 2)$: non-orientable

where $\#^n M$ means the connected sum of n-copies of a manifold M. Moreover the double cover of $\#^n \mathbb{RP}^2$ $(n \ge 2)$ is homeomorphic to $\#^{n-1}T^2$.

In this paper we show the following results.

THEOREM A. If M is homeomorphic to \mathbf{RP}^2 , then

Received November 4, 1997. Revised March 25, 1998.