INDUCED MAPPINGS ON HYPERSPACES II

By

Hiroshi Hosokawa

Abstract. A mapping $f: X \to Y$ between continua induces a mapping $C(f): C(X) \to C(Y)$ between hyperspaces. In section 2, we shall give a condition under which C(f) becomes confluent whenever f is confluent. In section 3, we consider the image and the inverse image of an order arc under the mapping C(f) and characterizations of a confluent mapping and a hereditarily confluent mapping. In the last section, we treat about particular subcontinua (which are like fat Whitney levels) and inverse image of them under C(f).

1. Introduction

In this paper, continua are compact connected metric spaces and mappings are continuous functions. The letters X and Y will always denote nondegenerate continua. The hyperspaces of X are the metric spaces $2^X = \{K \subset X : K \text{ is} nonempty and compact}\}$ and $C(X) = \{K \in 2^X : K \text{ is connected}\}$ with the Hausdorff metric H_d (see [10] for the definition of the Hausdorff metric and basic properties of hyperspaces). A mapping $f: X \to Y$ induces a mapping $C(f): C(X) \to C(Y)$, where C(f)(K) = f(K) for each $K \in C(K)$. Clearly, $C(g \circ f) = C(g) \circ C(f)$. In [4], we have proved that if Y is locally connected and f is confluent, then C(f) is confluent. In section 2, we show that the condition of locally connectedness can be weakened (Theorem 2.7).

An order arc in C(X) is an arc $\alpha \subset C(X)$ such that for $K, L \in \alpha, K \subset L$ or $L \subset K$. An order arc with the end points X and $\{x\}$ for some $x \in X$ is called a *large order arc*. Let $\Gamma(X) = \{\alpha : \alpha \text{ is an order arc in } C(X)\} \cup F_1(X)$, where

Key words and phrases: continuum, hyperspace, order arc, Whitney map, Whitney level, confluent mapping, inverse limit.

AMS subject classifications (1980): 54B20, 54C05.

Received February 16, 1996 Revised September 27, 1996