# THE SUM OF CONSECUTIVE FRACTIONAL PARTS 

By<br>Takao Komatsu<br>Centre for Number Theory Research, Macquarie University

## 1. Introduction

If we sum any $h$ consecutive terms in the sequence

$$
\{\theta\},\{2 \theta\},\{3 \theta\}, \ldots,
$$

what are reasonable bounds for the sum? Of course, it is at least as large as 0 and no more than $h$. But that is far too too rough. Thus we consider the following problem:

What is the least upper bound and the greatest lower bound of

$$
B_{h}(\theta)=\sum_{i=1}^{h}\{(N+i) \theta\} ?
$$

Here, $\theta$ is a given irrational number, and $h$ is some positive integer. The variable $N$ is restricted to the non-negative integers.

In the case of just one fractional part the bounds are known. As remarked in [2] we have

Theorem 1. Let the continued fraction expansion of $\theta$ be

$$
\theta=\left[a_{0}, a_{1}, a_{2}, \ldots\right]
$$

and denote by $q_{n}\left(=a_{n} q_{n-1}+q_{n-2}\right)$ the denominator of the $n$th convergent

$$
\left[a_{0}, a_{1}, \ldots, a_{n}\right]
$$

Then if $q$ is an integer satisfying $0<q<q_{n}$,

$$
\begin{cases}\left\{q_{n-1} \theta\right\} \leq\{q \theta\} \leq\left\{\left(q_{n}-q_{n-1}\right) \theta\right\} & \text { when } n \text { is odd } \\ \left\{\left(q_{n}-q_{n-1}\right) \theta\right\} \leq\{q \theta\} \leq\left\{q_{n-1} \theta\right\} & \text { when } n \text { is even } .\end{cases}
$$

[^0]
[^0]:    Received January 23, 1995.
    Revised April 7, 1995.

