SELFINJECTIVITY OF RINGS RELATIVE TO LAMBEK TORSION THEORY

By

Mitsuo Hoshino

Throughout this note R stands for an associative ring with identity, modules are unitary modules and torsion theories are Lambek torsion theories. We use the prefix " τ -" to mean "relative to Lambek torsion theory".

In this note we call a ring R left τ -selfinjective if $\operatorname{Ext}_{R}^{1}(X, R)$ is torsion for every left R-module X. Our main aim is to characterize left τ -selfinjective rings R by a certain kind of linear compactness. Recall that a module X is called absolutely pure if $\operatorname{Ext}_{R}^{1}(-, X)$ vanishes on the finitely presented modules. Also, let us call a module X semicompact if $\lim_{X \to Y_{\lambda}} \pi_{\lambda}$ is an epimorphism for every inverse system of epimorphisms $\{\pi_{\lambda} : X \to Y_{\lambda}\}_{\lambda \in \Lambda}$ with the Y_{λ} torsionless. Then, as pointed out by Stenström [18], the argument of Matlis [13, Propositions 2 and 3] yields that a ring R is left selfinjective if and only if it is left absolutely pure and right semicompact. It is shown in [9] that $\operatorname{Ext}_{R}^{1}(R/I, R)$ is torsion for every left ideal I of R if and only if R is τ -absolutely pure and right τ -semicompact. However, since τ -epimorphisms are not necessarily set-theoretic surjections, Baer's lemma does not work. Namely, even if $\operatorname{Ext}_{R}^{1}(R/I, R)$ is torsion for every left ideal I of R, R is not necessarily left τ -selfinjective. So we need a rather strong notion of linear compactness to characterize left τ selfinjective rings R.

We are also concerned with an arbitrary class of left *R*-modules \mathscr{C} which contains $_{R}R$ and is closed under taking factor modules and extensions. We ask when every submodule X of $E(_{R}R)$, the injective envelope of $_{R}R$, with $X \in \mathscr{C}$ is torsionless. In various situations, this problem has been considered by several authors (e.g., [3], [1], [16], [20], [2], [6], [7], [4], [15] and [8]). As a particular case, we study the class of all τ -finitely generated modules.

In the following, we denote by Mod R the category of left R-modules. Right R-modules are considered as left R^{op} -modules, where R^{op} denotes the opposite ring of R. Sometimes, we use the notation $_RX(\text{resp. }X_R)$ to stress that

Received December 15, 1994. Revised May 19, 1995.