ON THE EXISTENCE OF POSTPROJECTIVE COMPONENTS IN THE AUSLANDER-REITEN QUIVER OF AN ALGEBRA

By

P. DräXler and J. A. de la PeñA

Let k be an algebraically closed field and A be a basic finite-dimensional k algebra of the form $A=k Q / I$, where Q is a quiver (= finite oriented graph) and I is an admissible ideal of the path algebra $k Q$, see [3]. In this work we assume that Q has no oriented cycles.

Let $\bmod _{A}$ denote the category of finite dimensional left A-modules. For each indecomposable non-projective A-module X, the Auslander-Reiten translate $\tau_{A} X$ is an indecomposable non-injective module. The Auslander-Reiten quiver Γ_{A} has as vertices representatives of the isoclasses of the finite dimensional indecomposable A-modules, there are as many arrows from X to Y as $\operatorname{dim}_{k} \operatorname{rad}_{A}(X, Y) / \operatorname{rad}_{A}^{2}(X, Y)$. In this paper we do not distinguish between a module and its corresponding isoclass. A connected component \mathscr{P} of Γ_{A} is postprojective if \mathscr{P} has no oriented cycles and each module X in \mathscr{P} has only finitely many predecessors in the path order of \mathscr{P}. Several important classes of algebras have postprojective components: hereditary algebras [3, 6], algebras satisfying the separation condition [1, 2], tilted algebras [8].

The aim of this work is to find necessary and sufficient conditions for the existence of postprojective components in Γ_{A}. In section 1 we give an algorithmic procedure to decide the existence of postprojective components. In section 2 we consider a one-point extension algebra $A=B[M]$ such that all indecomposable direct summands of M belong to postprojective components of Γ_{B}, then we give conditions that assure that the projective A-module P with rad $P=M$ lies in a postprojective component of Γ_{A}. In section 3 we consider some special cases. We recall that once identified a postprojective component \mathscr{P} of Γ_{A}, the modules on \mathscr{P} may be constructed using the knitting procedure [3]. In [5], an algorithmic procedure which makes essential use of the knitting procedure is given to construct all the postprojective components of Γ_{A}.

[^0]
[^0]: Received October 24, 1994.
 Revised June 6, 1995.

