ON MINIMAL SURFACES WITH CONSTANT KÄHLER ANGLE IN CP ${ }^{3}$ AND CP ${ }^{4}$

By
Makoto SAKAKI

0. Introduction.

Let M be a 2-dimensional Riemannian manifold isometrically immersed in a Kähler manifold N with the complex structure J, and let $\left\{e_{1}, e_{2}\right\}$ be a local orthonormal frame on M. The Kähler angle α of M is defined to be the angle between $J e_{1}$ and e_{2}. The surface M is holomorphic, anti-holomorphic or totally real if and only if $\alpha=0, \pi$ or $\pi / 2$, respectively. In [6] Chern and Wolfson pointed out that the Kähler angle plays an important role in the study of minimal surfaces in Kähler manifolds.

Here we consider the problem to classify minimal surfaces with constant Kähler angle in $\boldsymbol{C} P^{n}$, where $\boldsymbol{C} P^{n}$ denotes the complex projective space of constant holomorphic sectional curvature 4. Concerning this problem, several results are known (see [1], [10], [8], [4] and [9]). In particular, we recall the following three facts. (I) A minimal surface with constant Kähler angle in $\boldsymbol{C} P^{2}$ is either holomorphic, anti-holomorphic or totally real (see [6, (2.32)] and [8, Lemma 2.1]). (II) A pseudo-holomorphic minimal surface with constant Kähler angle in $\boldsymbol{C P} \boldsymbol{P}^{3}$ is either holomorphic, anti-holomorphic, totally real or of constant curvature (see the proof of Theorem 9.1 of [1]). (III) A minimal 2 -sphere with constant Kähler angle in $\boldsymbol{C} P^{4}$ is either holomorphic, anti-holomorphic, totally real or of constant curvature (see [1, Theorem 9.1], cf. [8, p. 372]).

REMARK 1. (i) A minimal surface in $\boldsymbol{C} P^{n}$ is called pseudo-holomorphic if its harmonic sequence terminates at each end (see [3] and [5]).
(ii) Minimal surfaces with constant curvature and Kähler angle in $\boldsymbol{C} \boldsymbol{P}^{n}$ are classified in [10].

In this paper we prove the following:

THEOREM 1. Let M be a superconformal minimal surface with constant Kähler angle in C^{3}. Then M is totally real.

