COHOMOLOGIES OF HOMOGENEOUS ENDOMORPHISM BUNDLES OVER LOW DIMENSIONAL KÄHLER C-SPACES

By

Masaro Таканазні

1. Introduction

In this paper, we determine the infinitesimal deformations of an Einstein-Hermitian structure of a homogeneous vector bundle in several cases. In particular, we get the tangent space at the homogeneous structure of the moduli space of Einstein-Hermitian structures as the representation space of a compact Lie group.

A compact simply connected homogeneous Kähler manifold is called a *Kähler C-space*. Such a manifold can be written as G/K where G is a compact semisimple Lie group and K is the centralizer of a toral subgroup of G ([10]). Let G^c be the complexification of G and K^c the complexification of K in G^c . We denote by L the parabolic subgroup of G^c which contains K^c . G/K is diffeomorphic to G^c/L . Thus G/K admits a holomorphic structure from the holomorphic structure of G^c/L . Moreover it admits a G-invariant Kähler metric.

Let (ρ, V) be a complex representation of K. Then (ρ, V) can be extended to a holomorphic representation (ρ_L, V) of L. The homogeneous vector bundle $E_{\rho}=G\times_{\rho}V$ is isomorphic to the homogeneous holomorphic vector bundle $E_{\rho_L}=G^c\times_{\rho_L}V$ as C^{∞} -vector bundles. Thus the homogeneous vector bundle E_{ρ} has a natural holomorphic structure from the holomorphic structure of E_{ρ_L} ([3]). Moreover if (ρ, V) is irreducible, then E_{ρ} has a unique G-invariant Einstein-Hermitian structure up to a homothety ([8]).

An irreducible complex representation (ρ, V) is determined by the highest weight. Then a homogeneous vector bundle E_{ρ} is determined by the highest weight of (ρ, V) , if (ρ, V) is irreducible. It is natural to ask how we describe the deformations of the holomorphic structure and the Einstein-Hermitian structure by the highest weight. Also we ask how we describe moduli spaces of holomorphic structures and Einstein-Hermitian structures by the highest weight.

Received January 17, 1994.