ON THE SOLVABILITY OF CONVOLUTION EQUATIONS IN \mathcal{K}'_{M}

By

D. H. PAHK and B. K. SOHN

Abstract. Let \mathcal{K}'_M be the space of distributions on R^n which grow no faster than $e^{M(kx)}$ for some k>0 where M is an increasing continuous function on R^n , and let $\mathcal{O}'_C(\mathcal{K}'_M; \mathcal{K}'_M)$ be the space of convolution operators in \mathcal{K}'_M . We show that, for $S \in \mathcal{O}'_C(\mathcal{K}'_M; \mathcal{K}'_M)$, $S*\mathcal{K}'_M = \mathcal{K}'_M$ is equivalent to the following: Every distribution $u \in \mathcal{O}'_C(\mathcal{K}'_M; \mathcal{K}'_M)$ with $S*u \in \mathcal{K}_M$ is in \mathcal{K}_M .

1. Introduction.

Let \mathcal{K}'_{M} be the space of distributions on R^{n} which grow no faster than $e^{M(kx)}$ for some k>0, where M is an increasing continuous functions on R^{n} ; \mathcal{K}'_{M} is the dual space of \mathcal{K}_{M} , which we describe later. We denote by $\mathcal{O}'_{C}(\mathcal{K}'_{M}; \mathcal{K}'_{M})$ the space of convolution operators in \mathcal{K}'_{M} .

In [1], S. Abdullah proved that, if S is a distributions in $\mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_{M}; \mathcal{K}'_{M})$ and \hat{S} is its Fourier transform, the following conditions are equivalent:

(a) There exist positive constants A, C and a positive integer N such that

$$\sup_{\substack{z\in\mathcal{C}^n\\|z|\leq A\mathcal{Q}^{-1}(\log(2+|\xi|))}}|\hat{S}(z+\xi)|\geq \frac{C}{(1+|\xi|)^N}, \quad \xi\in \mathbb{R}^n$$

where Ω^{-1} is the inverse of Ω , which is the dual to M in the sense of Young. (b) $S*\mathcal{K}'_{M} = \mathcal{K}'_{M}$.

In this paper we prove that, for $S \in \mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_{M}; \mathcal{K}'_{M})$, the statements (a) and (b) are equivalent to the following: Every distribution $u \in \mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_{M}; \mathcal{K}'_{M})$ satisfying $S*u \in \mathcal{K}_{M}$ is in \mathcal{K}_{M} .

The motivation for this problem comes from the paper [5]. Here S. Sznaider and Z. Zielezny proved that, if S is a distribution in $\mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_1; \mathcal{K}'_1)$ and \hat{S} is its Fourier transform, the following statements are equivalent:

This research is partly supported by GARC, KOSEF and BRSI, Ministry of Education. Received December 10, 1993. Revised July 28, 1994.