ON REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM (I)

By

Yong-Soo Pyo

§ 1. Introduction.

A complex *n*-dimensional Kähler manifold of constant holomorphic sectional curvature c is called a *complex space form*, which is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space P_nC , a complex Euclidean space C^n or a complex hyperbolic space H_nC , according as c>0, c=0 or c<0.

Now, let M be a real hypersurface of an n-dimensional complex space form $M_n(c)$. Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from the Kähler metric and the almost complex structure of $M_n(c)$. Okumura [7] and Montiel and Romero [6] proved the following

THEOREM A. Let M be a real hypersurface of P_nC , $n \ge 2$. If it satisfies

$$(1.1) A \phi - \phi A = 0,$$

then M is locally a tube of radius r over one of the following Kähler submanifolds:

- (A_1) a hyperplane $P_{n-1}C$, where $0 < r < \pi/2$,
- (A_2) a totally geodesic P_kC $(1 \le k \le n-2)$, where $0 < r < \pi/2$, where A is the shape operator in the direction of the unit normal C on M.

THEOREM B. Let M be a real hypersurface of H_nC , $n \ge 2$. If it satisfies (1.1), then M is locally one of the following hypersurfaces:

- (A_0) a horosphere in H_nC , i.e., a Montiel tube,
- (A_1) a tube of a totally geodesic hyperplane $H_{n-1}C$,
- (A₂) a tube of a totally geodesic H_kC ($1 \le k \le n-2$).

On the other hand, the following theorem is proved by Maeda and Udagawa [4] under that the structure vector ξ is principal and then recently by Kimura

This research was partially supported by KOSEF (1992-1993). Received February 1, 1993, revised March 15, 1993.