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THE CYCLIC EXTENSIBILITY OF ESSENTIAL
COMPONENTS OF THE FIXED POINT SET
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1. Introduction.

All spaces considered in this paper are separable metric and every mapping
is continuous unless otherwise stated. Let $X$ be a continuum1). If every con-
tinuous mapping $f:X\rightarrow X$ has at least one fixed point, $X$ is called to have the
fixed point property $(f.p.p.)$ . In this paper we investigate the existence of
essential components of the fixed point sets and the property $f^{*}p$ . $p.$ , which
are defined as follows: a component $C$ of the fixed point set of $f$ is called
essential, if for any $\epsilon>0$ there exists $\delta>0$ such that every continuous mapping
$f^{\prime}$ : $X\rightarrow X$ with $|f^{\prime}-f|<\delta$ has a fixed point in the $\epsilon$ -neighborhood $U_{\epsilon}(C)$ of $C$ ,
and if otherwise it is called non-essential; and $X$ has $f^{*}p.p.$ , if $X$ has $f$ . $p$ . $p.$ ,
and the fixed point set of every continuous mapping $f:X\rightarrow X$ has at least one
essential component (see [2], [7]). Note that there exists a space which has
$f$ . $p$ . $p.$ , but does not have $f^{*}p$ . $p$ . (see [6]).

The Hilbert cube $I^{\omega}$ has $f^{*}p$ . $p$ . and the property $f^{*}p$ . $p$ . is invariant under
retractions. Hence every compact absolute retract has $f^{*}p$ . $p$ . (see [2]). Further,
if $X$ and $Y$ are two continua with $f^{*}p$ . $p$ . and $X\cap Y$ is a single point, then
$X\cup Y$ has $f^{*}p$ . $p$ . (see [1], [4], [5]). The last statement has been extended to
the special case where the number of continua is countably infinite (see [5]).
The purpose of this paper is to extend the above property to a more general
setting; we prove that a continuum $X$ has $f^{*}p$ . $p$ . whenever it can be expressed
as the union of a null sequence of subcontinua $X_{\alpha}\prime s$ with $f^{*}p$ . $p$ . such that any
pair of $X_{\alpha}$ and $X_{\beta}(\alpha\neq\beta)$ has at most one point in common and that the
boundary of each component of $X-X_{\alpha}$ consists of a single point for every $\alpha$

(see the Main Theorem). When $X$ is locally connected, it means the cyclic
extensibility of $f^{*}p$ . $p$ . (see [3], [4] and the Corollary).
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1) A continuum means a compact, connected metric space.


