AVERAGE ORDER OF THE DIVISOR FUNCTIONS WITH NEGATIVE POWER WEIGHT

Dedicated to Professor Katsumi Shiratani on his 60th birthday

By
Makoto Ishibashi

1. Introduction.

In this paper we are primarily concerned with the study of the sums of the sum-of-divisors function $\sigma_{a}(n)$ with negative power weight $n^{-t}(t>0)$, i. e. the sums of the form

$$
\sum_{n \leqq x} n^{-t} \sigma_{a}(n)
$$

and we also study the averages of associated error terms. Throughout the paper, we shall refer to [6] as I and whose results we cite e.g. as I-Theorem 1. First we consider the case $0 \leqq a-t \in \boldsymbol{Z}$, where \boldsymbol{Z} denotes the set of all rational integers, and prove Theorem 1 which generalizes and in some cases corrects MacLeod's Theorem 8[8]. This case is easier to handle although the needed calculations are rather long. And the special case $a=t$ of this is the starting point of the investigation of the case $a<t$. In this case our approach, which depends on MacLeod's back-track method (Lemma 1 below), is not so effective for a large, and we have to restrict ourselves to the narrower range $0 \leqq a \leqq 3$ which, however, covers and interpolates all the formulas obtained by MacLeod. In the case of general t we appeal to induction, and in order to guess the forms of the formulas, we have to calculate out all the cases $t=a+1$, $t=a+2, t=a+3$, the last being the initial value of t for induction. Here we take the instructive standpoint and calculated out all these three cases successively and then give the form for $t \geqq a+3$, since each independent formula seems to have its own interest. Except for integral values of a, our interpolating formulas involve various negative powers of x with extremely complicated and clumsy coefficients, but in some cases they are absorbed in the error terms by just multiplying the log-factor. The main reasons why we restrict ourselves to $0 \leqq a \leqq 3$ are the complication of these coefficients as well as inapplicability of Lemma 8. However, we state the formulas for $a>3$ as well, only for $t=$

[^0]
[^0]: Received April 15, 1992, Revised February 10, 1993.

