COMPLETE SPACE-LIKE SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR OF AN INDEFINITE SPACE FORM

By
Qing-ming Cheng* and Soon Meen Choi

1. Introduction.

Let $M_{p}^{n+p}(c)$ be an ($n+p$)-dimensional connected indefinite Riemannian manifold of index p and of constant curvature c, which is called an indefinite space form of index p. According to $c>0, c=0$ or $c<0$ it is denoted by $S_{p}^{n+p}(c)$, \boldsymbol{R}_{p}^{n+p} or $H_{p}^{n+p}(c)$. A submanifold M of an indefinite space form $M_{p}^{n+p}(c)$ is said to be space-like if the induced metric on M from that of the ambient space is positive definite. It is pointed out by some physicians that space-like hypersurfaces with constant mean curvature of arbitrary spacetimes get interested in relativity theory and an entire space-like hypersurface with constant mean curvature of an indefinite space form are studied by many authors (for examples: [1], [2], [3], [4], [7], [12] and so on).

Now, for a complete space-like submanifold M with parallel mean curvature vector of $S_{p}^{n+p}(c)$, it is also seen by the first author [5] that M is totally umbilic if $n=2$ and $h^{2} \leqq 4 c$ or if $n>2$ and $h^{2}<4(n-1) c$, where H denotes the mean curvature, i. e., the norm of the mean curvature vector and $h=n H$. On the other hand, the first author and Nakagawa [6] investigated the total umbilicness of such hypersurfaces from the different point of view. They proved that the squared norm S of the second fundamental form of M is bounded from above by $S_{+}(1)$ and if sup $S<S_{-}(1)$ and $H^{2} \leqq c$, then M is totally umbilic, where

$$
S_{ \pm}(p)=-p n c+\frac{n h^{2} \pm(n-2) \sqrt{h^{4}-4(n-1) c h^{2}}}{2(n-1)} .
$$

In this paper, we research the similar problem to the above property for the complete space-like submanifolds with parallel mean curvature vector of an indefinite space form. That is, we prove the following

[^0]
[^0]: * The project is supported by National Natural Science Foundation of China. Received November 5, 1992.

