SOME BOUNDS FOR THE SPECTRAL RADIUS OF A COXETER TRANSFORMATION

By

J. A. de la PEÑA and M. TAKANE

Let Δ be a finite quiver (=oriented, connected graph) without oriented cycles. Let k be any field. The path algebra $k[\Delta]$ is a hereditary algebra, see [7]. The study of this kind of algebras had played a central role in the development of the Representation Theory of Algebras, see [6, 4, 13, 11].

For a representation X of $k[\Delta]$, we denote by $\underline{\dim} X = (\dim_k X(i))_{i \in \Delta_0}$ the dimension vector of X, where Δ_0 is the set of vertices of Δ . The Coxeter matrix ϕ_{Δ} satisfies

$$\dim \tau X = (\dim X)\phi_{\Delta}$$

where τX denotes the Auslander-Reiten translate of the non-projective indecomposable representation X. The spectral radius $\rho(\phi_{\Delta})$ of the Coxeter matrix ϕ_{Δ} , contains relevant information about the behaviour of the translation τ , see [5, 11].

In this work, we consider some elementary relations between the spectral radii $\rho(\phi_{\bar{\Delta}})$ and $\rho(\phi_{\Delta})$ for a *Galois covering* $\pi: \bar{\Delta} \to \Delta$. In particular, we show that for any covering $\pi: \bar{\Delta} \to \Delta$ defined by the action of a residually finite group and any finite subgraph F of $\bar{\Delta}$, we have $\rho(\phi_F) \leq \rho(\phi_{\Delta})$.

In [12], we have explored the relations between the spectral radii $r(\Delta)$ and $r(\overline{\Delta})$ of the adjacency matrices $A_{\overline{\Delta}}$ and A_{Δ} , for a Galois covering $\pi: \overline{\Delta} \to \Delta$. In section 2, we show how to use these results to get some interesting bounds for $\rho(\phi_{\Delta})$.

Finally, we get some applications. In relation with a problem posed by Kerner, we show that

$$\frac{g(\Delta)}{\rho(\phi_{\Delta})} \leq \frac{|\Delta_0|}{2}$$
,

where $g(\Delta) = |\Delta_1| - |\Delta_0| + 1$ denotes the genus of the underlying graph of Δ .

1. Galois covering and Coxeter matrices.

1.1. Let n be the number of vertices of the quiver Δ .

Received October 14, 1991. Revised July 17, 1992.