SOME BOUNDS FOR THE SPECTRAL RADIUS OF A COXETER TRANSFORMATION

By
J. A. de la Peña and M. Takane

Let Δ be a finite quiver (=oriented, connected graph) without oriented cycles. Let k be any field. The path algebra $k[\Delta]$ is a hereditary algebra, see [7]. The study of this kind of algebras had played a central role in the development of the Representation Theory of Algebras, see [6, 4, 13, 11].

For a representation X of $k[\Delta]$, we denote by $\operatorname{dim} X=\left(\operatorname{dim}_{k} X(i)\right)_{i \in \Delta_{0}}$ the dimension vector of X, where Δ_{0} is the set of vertices of Δ. The Coxeter matrix ϕ_{Δ} satisfies

$$
\underline{\operatorname{dim}} \tau X=(\operatorname{dim} X) \phi_{\Delta}
$$

where τX denotes the Auslander-Reiten translate of the non-projective indecomposable representation X. The spectral radius $\rho\left(\phi_{\Delta}\right)$ of the Coxeter matrix ϕ_{Δ}, contains relevant information about the behaviour of the translation τ, see [5, 11].

In this work, we consider some elementary relations between the spectral radii $\rho\left(\phi_{\bar{\Delta}}\right)$ and $\rho\left(\phi_{\Delta}\right)$ for a Galois covering $\pi: \bar{\Delta} \rightarrow \Delta$. In particular, we show that for any covering $\pi: \bar{\Delta} \rightarrow \Delta$ defined by the action of a residually finite group and any finite subgraph F of $\bar{\Delta}$, we have $\rho\left(\phi_{F}\right) \leqq \rho\left(\phi_{\Delta}\right)$.

In [12], we have explored the relations between the spectral radii $r(\Delta)$ and $r(\bar{\Delta})$ of the adjacency matrices $A_{\bar{\Delta}}$ and A_{Δ}, for a Galois covering $\pi: \bar{\Delta} \rightarrow \Delta$. In section 2, we show how to use these results to get some interesting bounds for $\rho\left(\phi_{\Delta}\right)$.

Finally, we get some applications. In relation with a problem posed by Kerner, we show that

$$
\frac{g(\Delta)}{\rho\left(\phi_{\Delta}\right)} \leqq \frac{\left|\Delta_{0}\right|}{2}
$$

where $g(\Delta)=\left|\Delta_{1}\right|-\left|\Delta_{0}\right|+1$ denotes the genus of the underlying graph of Δ.

1. Galois covering and Coxeter matrices.

1.1. Let n be the number of vertices of the quiver Δ.

[^0]
[^0]: Received October 14, 1991. Revised July 17, 1992.

