IDEMPOTENT RINGS WHICH ARE EQUIVALENT TO RINGS WITH IDENTITY

By
J. L. Garcia ${ }^{1}$

Let A be a ring such that $A=A^{2}$, but which does not necessarily have an identity element. In studying properties of the ring A through properties of its modules, it is pointless to consider the category A-MOD of all the left A modules: for instance, every abelian group -with trivial multiplication- is in A-MOD. The natural choice for an interesting category of left A-modules seems to be the following: if a left A-module ${ }_{A} M$ is unital when $A M=M$, and is A-torsionfree when the annihilator ${ }_{{ }^{M}}(A)$ is zero, then A-mod will be the full subcategory of A-MOD whose objects are the unital and A-torsionfree left A-modules. The category A-mod appears in a number of papers (for instance, [7-9]) and when A has local units [1,2] or is a left s-unital ring [6, 12], then the objects of A-mod are the unital left A-modules. A-mod is a Grothendieck category and we study here the question of finding necessary and sufficient conditions on the ring A for A-mod to be equivalent to a category R-mod of modules over a ring with 1 . This was already considered for rings with local units in [1], [2] or [3], and for left s-unital rings in [6]. Our situation is therefore more general.

In this paper, all rings will be associative rings, but we do not assume that they have an identity. A ring A has local units [2] when for every finite family a_{1}, \cdots, a_{n} of elements of A there is an idempotent $e \in A$ such that $e a_{j}=$ $a_{j}=a_{j} e$ for all $j=1, \cdots, n$. A left A-module M is said to be unital if M has a spanning set (that is, if $A M=M$); and M has a finite spanning set when $M=\sum A x_{i}$ for a finite family of elements x_{1}, \cdots, x_{n} of M. The module ${ }_{A} M$ will be called A-torsionfree when $\tau_{M}(A)=0$. A ring A is said to be left nondegenerate if the left module ${ }_{A} A$ is A-torsionfree, and A is nondegenerate when it is both left and right nondegenerate (see [10, p. 88]). Clearly, a ring with local units is nondegenerate. The ring A will be called (left) s-unital [12] in case for each $a \in A$ (equivalently, for every finite family a_{1}, \cdots, a_{n} of elements

[^0]
[^0]: Received March 25, 1991, Revised November 1, 1991.
 ${ }^{1}$ With partial support from the D.G.I.C.Y.T. of Spain (PB 87-0703)

