IDEMPOTENT RINGS WHICH ARE EQUIVALENT TO RINGS WITH IDENTITY

By

J. L. GARCIA¹

Let A be a ring such that $A=A^2$, but which does not necessarily have an identity element. In studying properties of the ring A through properties of its modules, it is pointless to consider the category A-MOD of all the left Amodules: for instance, every abelian group -with trivial multiplication- is in A-MOD. The natural choice for an interesting category of left A-modules seems to be the following: if a left A-module $_{A}M$ is unital when AM = M, and is A-torsionfree when the annihilator $r_{M}(A)$ is zero, then A-mod will be the full subcategory of A-MOD whose objects are the unital and A-torsionfree left A-modules. The category A-mod appears in a number of papers (for instance, [7-9] and when A has local units [1, 2] or is a left s-unital ring [6, 12], then the objects of A-mod are the unital left A-modules. A-mod is a Grothendieck category and we study here the question of finding necessary and sufficient conditions on the ring A for A-mod to be equivalent to a category R-mod of modules over a ring with 1. This was already considered for rings with local units in [1], [2] or [3], and for left s-unital rings in [6]. Our situation is therefore more general.

In this paper, all rings will be associative rings, but we do not assume that they have an identity. A ring A has local units [2] when for every finite family a_1, \dots, a_n of elements of A there is an idempotent $e \in A$ such that $ea_j = a_j = a_j e$ for all $j=1, \dots, n$. A left A-module M is said to be unital if M has a spanning set (that is, if AM=M); and M has a finite spanning set when $M=\sum Ax_i$ for a finite family of elements x_1, \dots, x_n of M. The module $_AM$ will be called A-torsionfree when $_{M}(A)=0$. A ring A is said to be left nondegenerate if the left module $_AA$ is A-torsionfree, and A is nondegenerate when it is both left and right nondegenerate (see [10, p. 88]). Clearly, a ring with local units is nondegenerate. The ring A will be called (left) s-unital [12] in case for each $a \in A$ (equivalently, for every finite family a_1, \dots, a_n of elements

Received March 25, 1991, Revised November 1, 1991.

¹ With partial support from the D.G.I.C.Y.T. of Spain (PB 87-0703)