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Introduction.

Throughout this paper we assume that all spaces are just topological spaces,
otherwise specified. We start from the following theorem:

THEOREM $0[10]$ . Let $X\times Y$ be piecewise rectangular. Then,

$(^{*})$ $Id(X\times Y)\leqq IdX+IdY$ .
Where In $Z$ for a space $Z$ is a dimension function introduced by B. A. Pasynkov
[9], and we will give its definition in the following section of this paper as
well as the definition of piecewise rectangularity.

COROLLARY $0[10]$ . Let $X\times Y$ be normal, piecewise rectangular, and let each
of $X$ and $Y$ satisfy a finite sum theorem for $Ind$ ($FST(Ind)$ for short). Then we
have

$(^{**})$ $Ind(X\times Y)\leqq lndX+IndY$ .
The proofs for these results have not yet been published. The central ideas
for those were presented by the first author at General Topology and Geometric
Topology Symposium held at Tsukuba in 1990; the simplest case when $X\times Y$

is compact was talked there. Detailed proofs for Theorem $0$ and Corollary $0$

were given also by the first author when he visited Tsukuba in 1991 (see [12]).

On this occasion we discussed the following conjecture:

CONJECTURE. Let $\Pi=X_{1}^{\prime}\times X_{2}.*\in X_{1}^{\prime},$ $X_{1}=X_{1}^{\prime}\backslash \{*\}$ , and the product $\Pi_{0}=$

$X_{1}\times X_{2}$ be piecewise rectangular and satisfy the following condition $(\#)$ .
$(\#)$ Every set $H$ is functionally separated from $\{*\}xX_{2}$ whenever $H$ is

closed in $\Pi$ and $ H\cap(t*\}\times X_{2})=\emptyset$ . Then, we have Id $\Pi\leqq IdX_{1}^{\prime}+IdX_{2}$ .
In this paper we shall prove this conjecture for the following cases:
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