ON PRIME TWINS IN ARITHMETIC PROGRESSIONS

By
Hiroshi Mikawa

1. Introduction.

Let q and a be coprime positive integers. Put, for a non-zero integer k,

$$
\Psi(x ; q, a, 2 k)=\sum_{\substack{0<m, n \leq x \\ n \equiv a n=2 k \\ n \equiv(\bmod q)}} \Lambda(m) \Lambda(n)
$$

where Λ is the von Mangoldt function. It is expected that, provided ($a+2 k, q$) $=1, \Psi$ is asymptotically equal to

$$
H(x ; q, 2 k)=\mathbb{S} \prod_{\substack{p_{p} \nmid \rho_{2} \\ p}}\left(\frac{p-1}{p-2}\right) \cdot \frac{x-|2 k|}{\varphi(q)}
$$

where

$$
\mathfrak{S}=2 \prod_{p>2}\left(1-\frac{1}{(p-1)^{2}}\right)
$$

Let

$$
E(x ; q, a, 2 k)= \begin{cases}\Psi-H, & \text { if }(a+2 k, q)=1 \\ \Psi, & \text { otherwise }\end{cases}
$$

It is well known that $E(x ; 1,1,2 k)$ is small in an averaged sense over k.
In 1961 A. F. Lavrik [5] showed that, for any $A, B>0$,

$$
\sum_{0<2 k \leqslant x}|E(x ; q, a, 2 k)| \ll x^{2}(\log x)^{-A}
$$

uniformly for $(a, q)=1$ and $q \leqq(\log x)^{B}$. Recently H. Maier and C. Pommerance considered the inequality

$$
\sum_{q \leq Q} \max _{(a, q)=1} \sum_{0<2 k \leq x}|E(x ; q, a, 2 k)| \ll x^{2}(\log x)^{-A},
$$

which may be regarded as an analogue to the Bombieri-Vinogradov theorem. They [3] showed that the above is valid for $Q \leqq x^{\delta}$ with some small $\delta>0$, and applied their formula to a problem concerned with gaps between primes. Later A. Balog [1] generalized this to the case of prime multiplets, and extended the

