COVERINGS OVER *d*-GONAL CURVES

By

Naonori Ishii

§1. Introduction.

Let M be a compact Riemann surface and f be a meromorphic function on M. Let (f) be the principal divisor associated to f and $(f)_{\infty}$ be the polar divisor of f. We call f a meromorphic function of degree d if d=degree $(f)_{\infty}$. If d is the minimal integer in which a meromorphic function of degree d exists on M, then we call M a d-gonal curve.

Now we assume that M is *d*-gonal, and consider a covering map $\pi': M' \rightarrow M$ that M' still remains *d*-gonal. The purpose of this paper is to show how such π' can be characterized.

The case that π' is a normal covering and d=2 (i.e., M is hyperelliptic) has been already studied ([2], [3], [4] and [7]). In this case the existence of the hyperelliptic involution v' on M' plays an important role. More precisely, as v' commutes with each element of the Galois group G=Gal(M'/M), v' induces the hyperelliptic involution v on M and we can reduce π' to a normal covering $\pi: P'_1 \rightarrow P_1$ with Galois group G, where P'_1 and P_1 are Riemann spheres isomorphic to quotient Riemann surfaces $M'/\langle v' \rangle$ and $M/\langle v \rangle$ respectively. On the other hand it is known that finite subgroups of the linear transformation group are cyclic, dihedral, tetrahedral, octahedral and icosahedral. Horiuchi [3] decided all the different normal coverings $\pi': M' \rightarrow M$ over a hyperelliptic curve M that M' still remains a hyperelliptic curve by investigating each of above five types.

Let M be a d-gonal curve. In this paper we will show at first that a covering map $\pi': M' \to M$ (not necessarily normal) with d-gonal M' canonically induces some covering map $\pi: \mathbf{P}'_1 \to \mathbf{P}_1$ (Theorem 2.1 § 2). Moreover if both M and M' have unique linear system g^1_a and π' is normal, then we can see that π is also normal (Cor. 2.3).

In § 3, § 4 and § 5 we assume that M is a cyclic p-gonal curve for a prime number p. We will determine all ramification types of normal coverings $\pi': M' \rightarrow M$ with p-gonal M' by the same way as Horiuchi did in case $p=2(\S 4)$, Received May 13, 1991.