MINIMAL IMMERSION OF PSEUDO-RIEMANNIAN MANIFOLDS

By

Liu Hui-Li

1. Preliminares.

Let E_q^n be the *n*-dimensional Pseudo-Euclidean space with metric tensor given by

$$g = -\sum_{i=1}^{q} (dx_i)^2 + \sum_{j=q+1}^{n} (dx_j)^2$$

where (x_1, x_2, \dots, x_n) is a rectangular coordinate system of E_q^n . (E_q^n, g) is a flat Pseudo-Riemannian manifold of signature (q, n-q).

Let c be a point in E_q^{n+1} (or E_{q+1}^{n+1}) and r>0. We put

$$S_q^n(c, r) = \{x \in E_q^{n+1} : g(x-c, x-c) = r^2\}$$

$$H_q^n(c, r) = \{x \in E_{q+1}^{n+1} : g(x-c, x-c) = -r^2\}$$

It is known that $S_q^n(c, r)$ and $H_q^n(c, r)$ are complete Pseudo-Riemannian manifolds of signature (q, n-q) and respective constant sectional curvatures r^{-2} and $-r^{-2}$. $S_q^n(c, r)$ and $H_q^n(c, r)$ are called the Pseudo-Riemannian sphere and the Pseudohyperbolic space, respectively. The point c is called the center of $S_q^n(c, r)$ and $H_q^n(c, r)$. In the following, $S_q^n(0, r)$ and $H_q^n(0, r)$ are simply denoted by $S_q^n(r)$ and $H_q^n(r)$, respectively. N_p^n denotes the Pseudo-Riemannian manifold with metric tensor of signature (p, n-p). The Pseudo-Riemannian manifold, the Pseudo-Euclidean space, the Pseudo-Riemannian sphere and the Pseudo-hyperbolic space are simply denoted by the P-R manifold, the P-E space, the P-Rsphere and the P-h space. The P-R manifold N_1^n is called the Lorentz manifold and the P-E space E_1^p is called the Minkowski space.

Let $f: M_p^m \to N_q^n$ be an isometric immersion of a P-R manifold M_p^m in another P-R manifold N_q^n . That is $f * \bar{g} = g$, where g and \bar{g} are the indefinite metric tensors of M_p^m and N_q^n , respectively. $T(M_p^m)$ and $T^{\perp}(M_p^m)$ denote the tangent bundle and the normal bundle of M_p^m . $\nabla, \overline{\nabla}$ and ∇^{\perp} denote the Riemannian connections and the normal connection on M_p^m , N_q^n and $T^{\perp}(M_p^m)$, respectively. Then for any vector fields $X, Y \in T(M_p^m), v \in T^{\perp}(M_p^m)$, we have the Gauss formula

$$\overline{\nabla}_X Y = \nabla_X Y + B(X, Y),$$

Received November 5 1990, Revised May 22, 1991.

The author was supported in part by NNSF of China and SRF of NEUT, when he revised this paper.