MINIMAL IMMERSION OF PSEUDO-RIEMANNIAN MANIFOLDS

By

Liu HuI-LI

1. Preliminares.

Let E_{q}^{n} be the n-dimensional Pseudo-Euclidean space with metric tensor given by

$$
g=-\sum_{i=1}^{q}\left(d x_{i}\right)^{2}+\sum_{j=q+1}^{n}\left(d x_{j}\right)^{2}
$$

where $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a rectangular coordinate system of $E_{q}^{n} .\left(E_{q}^{n}, g\right)$ is a flat Pseudo-Riemannian manifold of signature ($q, n-q$).

Let c be a point in E_{q}^{n+1} (or E_{q+1}^{n+1}) and $r>0$. We put

$$
\begin{aligned}
& S_{q}^{n}(c, r)=\left\{x \in E_{q}^{n+1}: g(x-c, x-c)=r^{2}\right\} \\
& H_{q}^{n}(c, r)=\left\{x \in E_{q+1}^{n+1}: g(x-c, x-c)=-r^{2}\right\} .
\end{aligned}
$$

It is known that $S_{q}^{n}(c, r)$ and $H_{q}^{n}(c, r)$ are complete Pseudo-Riemannian manifolds of signature $(q, n-q)$ and respective constant sectional curvatures r^{-2} and $-r^{-2}$. $S_{q}^{n}(c, r)$ and $H_{q}^{n}(c, r)$ are called the Pseudo-Riemannian sphere and the Pseudohyperbolic space, respectively. The point c is called the center of $S_{q}^{n}(c, r)$ and $H_{q}^{n}(c, r)$. In the following, $S_{q}^{n}(0, r)$ and $H_{q}^{n}(0, r)$ are simply denoted by $S_{q}^{n}(r)$ and $H_{q}^{n}(r)$, respectively. N_{p}^{n} denotes the Pseudo-Riemannian manifold with metric tensor of signature ($p, n-p$). The Pseudo-Riemannian manifold, the Pseudo-Euclidean space, the Pseudo-Riemannian sphere and the Pseudo-hyperbolic space are simply denoted by the $P-R$ manifold, the $P-E$ space, the $P-R$ sphere and the $P-h$ space. The $P-R$ manifold N_{1}^{n} is called the Lorentz manifold and the $P-E$ space E_{1}^{p} is called the Minkowski space.

Let $f: M_{p}^{m} \rightarrow N_{q}^{n}$ be an isometric immersion of a $P-R$ manifold M_{p}^{m} in another $P-R$ manifold N_{q}^{n}. That is $f * \bar{g}=g$, where g and \bar{g} are the indefinite metric tensors of M_{p}^{m} and N_{q}^{n}, respectively. $T\left(M_{p}^{m}\right)$ and $T^{\perp}\left(M_{p}^{m}\right)$ denote the tangent bundle and the normal bundle of $M_{p}^{m} . \nabla, \bar{\nabla}$ and ∇^{\perp} denote the Riemannian connections and the normal connection on M_{p}^{m}, N_{q}^{n} and $T^{\perp}\left(M_{p}^{m}\right)$, respectively. Then for any vector fields $X, Y \in T\left(M_{p}^{m}\right), v \in T^{\perp}\left(M_{p}^{m}\right)$, we have the Gauss formula

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y)
$$

Received November 5 1990, Revised May 22, 1991.
The author was supported in part by NNSF of China and SRF of NEUT, when he revised this paper.

