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Introduction.

Let M be a compact orientable manifold and let & be a harmonic foliation
on M with respect to a bundle-like metric. Kamber and Tondeur [4] proved
a fundamental formula for a special variation of &, and making use of it they
proved that the index of a harmonic foliation F on the sphere S™ (n>2) for
which the standard metric is bundle-like is not smaller than ¢+1, where ¢ is
the codimension of ¥. On the other hand, Nakagawa and Takagi [6] proved
that any harmonic foliation on a compact space form M™(c¢), ¢=0, for which
the normal plane field is minimal is totally geodesic. Here a complete Rie-
mannian manifold of constant curvature is called a space form and an n-dimen-
sional space form of constant curvature ¢ is denoted by M™(). However a
formula in [6] contains an error, and hence the above result is yet open.

The purpose of this paper is to study a harmonic foliation on the sphere.
We use the method of Nakagawa and Takagi [6] to calculate the divergence
of a vector field and obtain a formula of Simons’ type. Then, after Chern, do
Carmo and Kobayashi [2] it is proved that a harmonic foliation ¥ of codimen-
sion ¢ on an n-dimensional unit sphere satisfying S<(n—q)/(2—1/¢) for which
the normal plane field is minimal, is totally geodesic or n=4, ¢=2, where S
denotes the square of the norm of the second fundamental form of each leaf.
Moreover, was also prove that if S<(n—¢q)/(2—1/q) or K=(¢—1)/(2¢g—1) for a
harmonic foliation & of codimension ¢ on the unit sphere with respect to a
bundle-like metric, here K denotes the sectional curvature of leaves, then & is
totally geodesic. Thus they have been completely classified by the theorem
due to Escobales [3].
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