COMPLETELY CELL SOLUBLE SPACES

(Dedicated to Professor Yukihiro Kodama on his 60th birthday)

By

Toshiji TERADA

1. Introduction.

A topological space X is called homogeneous if for arbitrary points x, $y \in X$ there exists a homeomorphism f from X onto itself such that f(x) = y. Is every compact T_2 -space the continuous image of a homogeneous compact T_2 -space (Arhangel'skii [2])? Particularly, is a compact T_2 -space nonhomogeneous if it can be mapped continuously onto βN (van Douwen [3])? These interesting problems remain unsolved. Related to these problems, Motorov showed that there exists a metrizable compact T_2 -space which is not a retract of any homogeneous compact T_2 -space. In the specific idea of Motorov, Arhangel'skii ([1], [2]) found an interesting topological property called cell solubility which every retract of an arbitrary homogeneous compact T_2 -space posesses. He raised some problems related to this topological property. We solved already one of his problems [6]. In this paper we will answer to some other problems of Arhangel'skii.

2. Definitions.

The following definitions were introduced by Arhangel'skii [1], [2].

- 2.1. DEFINITION. Let X be a topological space. A map F of X into the set of all closed subsets of X is called a *cellularity* on X if the following conditions are satisfied:
 - 1) $x \in F(x)$,
 - 2) if $y \in F(x)$ then $F(y) \subset F(x)$,
- 3) if f is a homeomorphism from X onto itself such that f(x)=y then f(F(x))=F(y).

The sets F(x) are called the *terms* of the cellularity F. A cellularity F on a space X is called *disjoint* if for any x, $y \in X$ either F(x) = F(y) or $F(x) \cap F(y)$

Received December 14, 1989.