ON TYPE NUMBER OF REAL HYPERSURFACES IN $\boldsymbol{P}_{n}(\boldsymbol{C})$

By
Young Jin SuH*

Introduction.

Let $P_{n}(\boldsymbol{C})$ denote an n-dimensional complex projective space with the FubiniStudy metric of constant holomorphic sectional curvature $4 c$. Real hypersurfaces in $P_{n}(\boldsymbol{C})$ have been studied by many differential geometers (See [2], [3], [4], [5] and [6]).

In particular, as for a problem with respect to the typec number t, i. e., the rank of the second fundamental form of real hypersurfaces M in $P_{n}(\boldsymbol{C})$, R. Takagi showed in [6] that there is a point p on M such that $t(p) \geqq 2$, and M. Kimura and S. Maeda [4] gave an example of real hypersurfaces in $P_{n}(\boldsymbol{C})$ satisfying $t=2$, which is non-complete. In this paper we shall prove

Theorem 1. Let M be a complete real hypersurface in $P_{n}(\boldsymbol{C})(n \geqq 3)$. Then there exists a point p on M such that $t(p) \geqq 3$.

REMAPK. It is known that a certain geodesic hypersphere in $P_{2}(\boldsymbol{C})$ has a property $t=2$ (cf. [2], [7]). Thus the assumption $n \geqq 3$ in Theorem 1 can not be removed.

The author would like to express his sincere gratitude to Prof. R. Takagi for his valuable suggestions and encouragement during the preparation of this paper.

1. Preliminaries.

Let M be a real hypersurface in $P_{n}(\boldsymbol{C})(n \geqq 2)$. Let $\left\{e_{1}, \cdots, e_{2 n}\right\}$ be a local field of orthonormal frame in $P_{n}(\boldsymbol{C})$ such that, restricted to $M, e_{1}, \cdots, e_{2 n-1}$ are tangent to M. Denote its dual frame field by $\theta_{1}, \cdots, \theta_{2 n}$. We use the following convention on the range of indices unless otherwise stated; $A, B, \cdots,=1, \cdots$, $2 n$ and $i, j, \cdots,=1, \cdots, 2 n-1$.

The connection forms $\theta_{A B}$ are defined as the 1 -forms satisfying

[^0]
[^0]: *) Partially supported by TGRC-KOSEF. Received May 23, 1990.

