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ON TYPE NUMBER OF REAL HYPERSURFACES IN $P_{n}(C)$
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Introduction.

Let $P_{n}(C)$ denote an n-dimensional complex projective space with the Fubini-
Study metric of constant holomorphic sectional curvature $4c$ . Real hypersurfaces
in $P_{n}(C)$ have been studied by many differential geometers (See [2], [3], [4], [5]

and [6]).

In particular, as for a problem with respect to the typec number $t,$
$i$ . $e.$ ,

the rank of the second fundamental form of real hypersurfaces $M$ in $P_{n}(C)$ ,

R. Takagi showed in [6] that there is a point $p$ on $M$ such that $t(p)\geqq 2$ , and
M. Kimura and S. Maeda [4] gave an example of real hypersurfaces in $P_{n}(C)$

satisfying $t=2$ , which is non-complete. In this paper we shall prove

THEOREM 1. Let $M$ be a complete real hypersurface in $P_{n}(C)(n\geqq 3)$ . Then
there exists a point $p$ on $M$ such that $t(p)\geqq 3$ .

REMAPK. It is known that a certain geodesic hypersphere in $P_{2}(C)$ has a
property $t=2$ (cf. [2], [7]). Thus the assumption $n\geqq 3$ in Theorem 1 can not
be removed.
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1. Preliminaries.

Let $M$ be a real hypersurface in $P_{n}(C)(n\geqq 2)$ . Let $\{e_{1}, \cdots, e_{2n}\}$ be a local
field of orthonormal frame in $P_{n}(C)$ such that, restricted to $M,$ $e_{1},$ $\cdots,$ $e_{2n-1}$ are
tangent to $M$. Denote its dual frame field by $\theta_{1},$ $\cdots$ , $\theta_{2n}$ . We use the following

convention on the range of indices unless otherwise stated; $A,$ $B,$ $\cdots$

$,$

$=1,$ $\cdots$ ,
$2n$ and $i,$ $j,$ $\cdots$

$,$

$=1,$ $\cdots$ , $2n-1$ .
The connection forms $\theta_{AB}$ are defined as the l-forms satisfying
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