A GENERALIZATION OF HEREDITY IDEALS

(Dedicated to Professor Manabu Harada on his 60th birthday)

By

Mitsuo HOSHINO and Yoshito YUKIMOTO

1. Introduction

Throughout this note, A stands for a basic left and right artinian ring, J its Jacobson radical and $\{e_1, \dots, e_n\}$ the complete set of orthogonal primitive idempotents in A. Let c_{ij} denote the composition length of $e_{iAe_i}e_iAe_j$ for $1 \leq i, j \leq n$. The matrix $C(A) = (c_{ij})$ is called the left Cartan matrix of A.

Does gl dim $A < \infty$ imply det C(A)=1? This problem has been partially settled by several authors (e.g., Zacharia [7], Wilson [6], Burgess et al. [2], Fuller and Zimmermann-Huisgen [5] and so on), but is still open. There is a way to reduce the size of the matrix C(A). Namely, if proj dim₄ $Ae_1/Je_1 < \infty$ and $\operatorname{Ext}_{A}^{k}(Ae_1/Je_1, Ae_1/Je_1)=0$ for k>0, then $\operatorname{gl}\dim(1-e_1)A(1-e_1)\leq \operatorname{gl}\dim A+$ proj dim₄ Je_1 and det $C((1-e_1)A(1-e_1))=\det C(A)$. This reduction was effectively used by Zacharia [7] to show that $\operatorname{gl}\dim A\leq 2$ implies det C(A)=1 (see also Burgess et al. [2]). Unfortunately, as will be seen, Zacharia's reduction is not necessarily applicable if $\operatorname{gl}\dim A\geq 3$.

The aim of this note is to provide another type of reduction. To do this, we will generalize the notion of a heredity ideal which was first introduced by Cline, Parshall and Scott [3]. We are interested in a two-sided ideal I of A such that det $C(A/I) = \det C(A)$ (of course, we claim $\operatorname{gl} \dim A/I < \infty$ whenever $\operatorname{gl} \dim A < \infty$). We will show that the trace ideal of a certain left A-module enjoys this property. We will prove the following

THEOREM. Let Q be a torsionless left A-module and I its trace ideal. Suppose the following conditions:

- (a) $D = \text{End}_A(Q)$ is a division ring,
- (b) the evaluation map $Q \bigotimes_{D} \operatorname{Hom}_{A}(Q, A) \rightarrow A$ is monic.
- (c) $\operatorname{Tor}_{k}^{A}(\operatorname{Tr} Q, Q)=0$ for $k \geq 2$, where Tr is the transpose, and
- (d) proj dim_A $Q < \infty$.

Received May 18, 1989. Revised November 1, 1989.