REALIZATIONS OF INVOLUTIVE AUTOMORPHISMS σ AND G^{σ} OF EXCEPTIONAL LINEAR LIE GROUPS G, PART I, $G=G_2$. F_4 AND E_6

By Ichiro YOKOTA

M. Berger [1] classified involutive automorphisms σ of simple Lie algebras g and determined the type of the subalgebras \mathfrak{g}^{σ} of fixed points. Now for connected exceptional universal linear Lie groups G, we shall find involutive automorphisms σ and realize the subgroups G^{σ} of fixed points explicitly. In this paper we consider the cases of type G_2 , F_4 and E_6 . Our results are as follows. (Results of E_7 will be soon appeared in this Journal).

G	G^{σ}	σ		
$G_2{}^C$	$(Sp(1, C)\times Sp(1, C))/\mathbf{Z_2}$	γ		
$G_{\mathtt{2}}{}^{C}$	G_2	au		
G_{2}	$(Sp(1)\times Sp(1))/\boldsymbol{Z_2}$	γ		
$G_{2}{}^{C}$	$G_{2(2)}$	$ au\gamma$	$ au\gamma_c$	
$G_{2(2)}$	$(Sp(1)\times Sp(1))/\boldsymbol{Z_2}$	γ		
	$(Sp(1, \mathbf{R}) \times Sp(1, \mathbf{R}))/\mathbf{Z_2} \times 2$		γ	
$F_{m{4}}{}^{C}$	$(Sp(1, C)\times Sp(3, C))/\mathbf{Z_2}$	7		
	Spin(9, C)	σ		
$F_{\bf 4}{}^{\scriptscriptstyle C}$	F_4	τ		
F_{4}	$(Sp(1)\times Sp(3))/\mathbf{Z}_2$	γ		
	Spin(9)	σ		
$F_{{\scriptscriptstyle \bf 4}}{}^{\scriptscriptstyle C}$	$F_{4(4)}$	$ au\gamma$	$ au\gamma_c$	τγσ
$F_{4(4)}$	$(Sp(1)\times Sp(3))/\mathbf{Z_2}$	γ		
	$(Sp(1, \mathbf{R}) \times Sp(3, \mathbf{R}))/\mathbf{Z}_2 \times 2$		γ.	
	$(Sp(1)\times Sp(1, 2))/\mathbf{Z}_2$			γ
	spin(4, 5)	σ		
$F_{ullet}{}^{\scriptscriptstyle C}$	$F_{4(-20)}$	$ au\sigma$	$ au\sigma'$	
$F_{4(-20)}$	$(Sp(1)\times Sp(1, 2))/\mathbf{Z_2}$	γ		
	Spin(9)	σ		

Received December 20, 1988. Revised July 3, 1989.