ON ALMOST-PRIMES IN ARITHMETIC PROGRESSIONS

By
Hiroshi Mikawa

1. Introdnction.

Let P_{r} denote integers with at most r prime factors counted according to multiplicity. In 1975, Y, Motohashi [9] showed that there exists a P_{3} such that

$$
P_{3} \equiv a(\bmod q), \quad P_{3} \ll q(\log q)^{70}
$$

for any fixed non-zero integer a and almost-all moduli q with $(q, a)=1$. His argument based upon the weighted linear sieve and the Brun-Titchmarsh theorem on average, which are due to H.E. Richert [10] and C. Hooley [4], respectively. H. Iwaniec's fundamental works [6, 7], therefore, suggest possibilities of an improvement upon the above result. In this paper we present an estimation for P_{2}. We shall prove the following

Theorem. Let Q be a large parameter and a be any fixed integer, $0<|a|$ $\leqq Q$. Then, except possibly for $O(Q / \log Q)$ moduli q with $(q, a)=1$ and $Q<q \leqq 2 Q$, there exists a P_{2} such that

$$
P_{2} \equiv a(\bmod q), \quad P_{2} \leqq \tau(a) q(\log q)^{7}
$$

where the implied O-constant is absolute and τ denotes the divisor function.
Our proof of Theorem is performed by a simple modification of the argument in our previous paper [8], in which the dual problem is considered. In fact, the numerical work in the main term from sieve estimate is identical. Succeeding to Hooley's investigation [4] we treat the remainder terms with the same manner as in [8]. Our main lemma (see Lemma 1 below) is weaker than E. Fouvry's works [1-3] in its scope; however, it will be found to be suitable for an application to the weighted sieve.

We use the standard notation in number theory. Especially, \bar{r}, used in either r / s or congruence $(\bmod q)$, means that $\bar{r} r \equiv 1(\bmod s)$. $\sum_{x=1}^{y} *$ stands for the summation with restriction $(x, y)=1 . \quad n \sim N$ means $N \leqq N_{1}<n \leqq N_{2} \leqq 2 N$ for some N_{1} and $N_{2} . \varepsilon$ denotes a small positive constant and the constants implied in the

[^0]
[^0]: Received June 19, 1989.

