ON REAL HYPERSURFACES OF A COMPLEX SPACE FORM WITH η -PARALLEL RICCI TENSOR

By

Young Jin SUH*

Introduction.

Let $M_n(c)$ denote an *n*-dimensional complex space form with constant holomorphic sectional curvature c. It is well known that a complete and simply connected complex space form consists of a complex projective space CP^n , a complex Euclidean space C^n or a complex hyperbolic space CH^n , according as c>0, c=0 or c<0. In this paper we consider a real hypersurface M of CP^n or CH^n .

The study of real hypersurfaces of CP^n was initiated by Takagi [10], who proved that all homogeneous hypersurfaces of CP^n could be divided into six types which are said to be of type A_1 , A_2 , B, C, D and E. Moreover, he showed that if a real hypersurface M of CP^n has two or three distinct constant principal curvatures, then M is locally congruent to one of the homogeneous ones of type A_1 , A_2 and B ([11]). Recently, to give another characterization of homogeneous hypersurfaces of type A_1 , A_2 and B in CP^n Kimura and Maeda [6] introduced the notion of an η -parallel second fundamental form, which was defined by $g((\nabla_X A)Y, Z) = 0$ for any vector fields X, Y and Z orthogonal to the structure vector field ξ , where A means the second fundamental form of M in CP^n , and g and V denote the induced Riemannian metric and the induced Riemannian connection, respectively.

On the other hand, real hypersurfaces of CH^n have also been investigated by many authors (Berndt [1], Montiel [8], Montiel and Romero [9]).

Using some results about focal sets, Berndt [1] proved the following.

THEOREM A. Let M be a connected real hypersurface of $CH^n(n \ge 2)$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following.

 (A_0) a horosphere in CH^n .

Received September 16, 1988. Revised January 24, 1989.

^{*)} Partially supported by TGRC-KOSEF.