A CHARACTERIZATION OF A REAL HYPERSURFACE OF TYPE B

By

U-Hang KI, Hyang Sook KIM and Hisao NAKAGAWA

Introduction.

A complex *n*-dimensional Kaehler manifold of constant holomorphic sectional curvature *c* is called a *complex space form*, which is denoted by $M_n(c)$. A complete and simply connected complex space form is a complex projective space P_nC , a complex Euclidean space C^n or a complex hyperbolic space H_nC according as c>0, c=0 or c<0.

In his study [12] of real hypersurfaces of P_nC , Takagi showed that all homogeneous hypersurfaces could be divided into six types. Namely, he proved the following

THEOREM A. Let M be a homogeneous real hypersurface of P_nC . Then M is locally congruent to one of the following hypersurfaces:

 (A_1) a geodesic hypersurface,

(A₂) a tube over a totally geodesic P_kC $(1 \le k \le n-2)$,

- (B) a tube over a complex quadric Q_{n-1} ,
- (C) a tube over $P_1C \times P_{(n-1)/2}C$ and $n \geq 5$ is odd,
- (D) a tube over a complex Grassmann $G_{2,5}$ and n=9,
- (E) a tube over a Hermitian symmetric space SO(10)/U(5) and n=15.

Moreover, Takagi [13] proved that if a real hypersurface of P_nC has two or three distinct constant principal curvatures, then M is locally congruent to the case of the homogeneous ones of type A_1 , A_2 or B. In what follows the induced almost contact metric structure of the real hypersurface of $M_n(c)$ is denoted by (ϕ, g, ξ, η) . The structure vector ξ is said to be *principal* if $A\xi = \alpha \xi$, where A is the shape operator in the direction of the unit normal C and $\alpha =$ $\eta(A\xi)$. Real hypersurfaces of P_nC have been studied by many differential geometers ([2], [4], [5], [6] and [7] etc.) and as one of them, Kimura [5] asserts

^{*)} This research was partially supported by TGRC-KOSEF. Received January 17, 1989.