ALMOST-PRIMES IN ARITHMETIC PROGRESSIONS AND SHORT INTERVALS

By
Hiroshi Mikawa

1. Introduction.

In 1936, P. Turán [9] showed, under the generalized Riemann hypothesis, there exists a prime p such that

$$
p \equiv a(\bmod q), \quad p \leqq q(\log q)^{2+\varepsilon}
$$

for almost-all reduced classes a $(\bmod q)$. The terminology almost-all means that the number of exceptional reduced classes $\bmod q$ is $o(\phi(q))$ as $q \rightarrow \infty$. Y. Motohashi [6] considered the corresponding problem for almost-primes. Let P_{2} denote integers with at most two prime factors, multiple factors being counted multiplicity. He proved that there exists a P_{2} such that

$$
P_{2} \equiv a(\bmod q), \quad P_{2} \leqq q^{11 / 10}
$$

for almost-all reduced classes a $\bmod q$. Moreover he remarked, assuming the q-analogue of Lindelöf hypothesis, the exponent $11 / 10$ may be replaced by $1+\varepsilon$, $\varepsilon>0$.

It is the first purpose of this paper to make an improvement upon this result. Let $g(x)$ denote any positive function such that $g(x) \rightarrow \infty$ as $x \rightarrow \infty$.

Theorem 1. There exists a P_{2} such that

$$
P_{2} \equiv a(\bmod q), \quad P_{2} \leqq g(q) q(\log q)^{5}
$$

for almost-all reduced classes a mod q.
In 1943, A. Selberg [8] showed, under the Riemann hypothesis, there exists a prime in the intervals

$$
\left(n, n+g(n)(\log n)^{2}\right]
$$

for almost-all n. Here almost-all means that the number of exceptional n 's not exceeding x is $o(x)$ as $x \rightarrow \infty$.

Several authors considered the analogous problem for P_{2}. Thus D. R. Heath-

[^0]
[^0]: Received June 7, 1988.

