ALMOST-PRIMES IN ARITHMETIC PROGRESSIONS AND SHORT INTERVALS

By

Hiroshi MIKAWA

1. Introduction.

In 1936, P. Turán [9] showed, under the generalized Riemann hypothesis, there exists a prime p such that

$$p \equiv a \pmod{q}, \quad p \leq q \pmod{q^{2+\varepsilon}}$$

for almost-all reduced classes a $(\mod q)$. The terminology almost-all means that the number of exceptional reduced classes $\mod q$ is $o(\phi(q))$ as $q \to \infty$. Y. Motohashi [6] considered the corresponding problem for almost-primes. Let P_2 denote integers with at most two prime factors, multiple factors being counted multiplicity. He proved that there exists a P_2 such that

$$P_2 \equiv a \pmod{q}$$
, $P_2 \leq q^{11/1}$

for almost-all reduced classes a mod q. Moreover he remarked, assuming the q-analogue of Lindelöf hypothesis, the exponent 11/10 may be replaced by $1+\varepsilon$, $\varepsilon > 0$.

It is the first purpose of this paper to make an improvement upon this result. Let g(x) denote any positive function such that $g(x) \rightarrow \infty$ as $x \rightarrow \infty$.

THEOREM 1. There exists a P_2 such that

 $P_2 \equiv a \pmod{q}$, $P_2 \leq g(q)q(\log q)^5$

for almost-all reduced classes a mod q.

In 1943, A. Selberg [8] showed, under the Riemann hypothesis, there exists a prime in the intervals

$$(n, n+g(n)(\log n)^2]$$

for almost-all n. Here almost-all means that the number of exceptional n's not exceeding x is o(x) as $x \rightarrow \infty$.

Several authors considered the analogous problem for P_2 . Thus D. R. Heath-Received June 7, 1988.