TSUKUBA J. MATH. Vol. 13 No. 2 (1989), 353-362

CORINGS AND INVERTIBLE BIMODULES

By

Akira Masuoka

Introduction.

Let $S \subset R$ be a faithfully flat extension of commutative rings (with 1). Grothendieck's faithfully flat descent theory tells that the relative Picard group Pic (R/S) is isomorphic to $H^1(R/S, U)$, the Amitsur 1-cohomology group for the units-functor U. We consider the non-commutative version of this fact in this paper.

Let $S \subset R$ be (non-commutative) rings and denote by $\operatorname{Inv}_{S}(R)$ the group of invertible S-subbimodules of R. Sweedler defined the natural R-coring structure on $R \otimes_{S} R$. We define the natural group map $\Gamma : \operatorname{Inv}_{S}(R) \to \operatorname{Aut}_{R-\operatorname{cor}}(R \otimes_{S} R)$, where $\operatorname{Aut}_{R-\operatorname{cor}}(R \otimes_{S} R)$ denotes the group of R-coring automorphisms of $R \otimes_{S} R$. When is Γ an isomorphism? The answer presented here is as follows (2.10): If either

(a) R is faithfully flat as a right or left S-module

or (b) S is a direct summand of R as a right (resp. left) S-module and the functor $-\bigotimes_s R$ (resp. $R\bigotimes_s -$) reflects isomorphisms,

then Γ is an isomorphism. Indeed we consider some monoid map $I_{S}^{l}(R) \rightarrow End_{R-cor}(R \otimes_{S} R)$, which is an extension of Γ . We have two applications (3.2) and (3.4), both of which are concerned with the Galois theory.

§0. Conventions.

Let T, Q be arbitrary rings with 1. We write

U(T)=the group of units in T.

All modules are assumed to be unital. A (T, Q)-bimodule means a left Tmodule and right Q-module M satisfying (tm)q = t(mq) for $t \in T$, $m \in M$ and $q \in Q$. A T-bimodule means a (T, T)-bimodule. We denote by

$$_T\mathcal{M}, \mathcal{M}_T \text{ and } _T\mathcal{M}_Q$$

the category of left T-modules, of right T-modules and of (T, Q)-bimodules,

Received May 9, 1988.