ON THE NEUMANN PROBLEM FOR SOME LINEAR HYPERBOLIC SYSTEMS OF 2ND ORDER WITH COEFFICIENTS IN SOBOLEV SPACES

By
Yoshihiro Shibata

Introduction.

Let Ω be a domain in an n-dimensional Euclidean space \boldsymbol{R}^{n}, its boundary Γ being a C^{∞} and compact hypersurface. Throughout the present paper, we assume that $n \geqq 2^{(1)}$. Let $x=\left(x_{1}, \cdots, x_{n}\right)$ denote points of \boldsymbol{R}^{n} and t a time variable. For differentiations we use the symbols: $\partial_{t}=\partial_{0}=\partial / \partial t$ and $\partial_{j}=\partial / \partial x_{j}(j=1, \cdots, n)$. In this paper, we consider the following mixed problem:

$$
\begin{cases}P(t)[\vec{u}(t)]=\partial_{t}^{2} \vec{u}(t)-\partial_{i}\left(A^{i o}(t) \partial_{t} \vec{u}(t)+A^{i j}(t) \partial_{j} \vec{u}(t)\right)=\vec{f}_{\Omega}(t) & \text { in }(0, T) \times \Omega, \tag{N}\\ Q(t)[\vec{u}(t)]=\nu_{i} A^{i j}(t) \partial_{j} \vec{u}(t)+B^{j}(t) \partial_{j} \vec{u}(t)+B^{0}(t) \partial_{t} \vec{u}(t)=\vec{f}_{\Gamma}(t) & \text { on }(0, T) \times \Gamma, \\ \vec{u}(0)=\vec{u}_{0}, \quad \partial_{t} \vec{u}(0)=\vec{u}_{1} & \text { in } \Omega,\end{cases}
$$

where T is a positive constant and $\vec{u}={ }^{t}\left(u_{1}, \cdots, u_{m}\right)$ (=the row vector of length m and ${ }^{t} M$ means the transposed vector (resp. matrix) of the vector (resp. matrix) $M)$. Here and hereafter, the summation convention is understood such as the sub and superscripts $i, i^{\prime}, j, j^{\prime}$ (resp. p, q) take all values 1 to n (resp. 1 to $n-1)$. For any vector valued function $\vec{u}={ }^{t}\left(u_{1}, \cdots, u_{m}\right)$, we put $\partial_{t}^{j} \partial_{x}^{\alpha} \vec{u}={ }^{t}\left(\partial_{t}^{j} \partial_{x}^{\alpha} u_{i}\right.$ $\left.\cdots, \partial_{t}^{j} \partial_{x}^{\alpha} u_{m}\right)$. The $\nu_{i}=\nu_{i}(x)$ are real-valued functions in $C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ such that the vector $\nu(x)=\left(\nu_{1}(x), \cdots, \nu_{n}(x)\right)$ represents the unit outer normal to Γ at $x \in \Gamma$. In the present paper, functions are assumed to be real-valued, unless ortherwise specified. Below, I will always refer to the closed interval containing $[0, T]$ strictly, say, $I=[-\tau, T+\tau](\tau>0)$. And also, K will always refer to the fixed integer $\geqq[n / 2]+2$, which represents the order of regularitiy of solutions and coefficients of the operators $P(t)$ and $Q(t)$. The $A^{i l}(t)=A^{i l}(t, x)$ and $B^{l}(t)=$ $B^{l}(t, x)(l=0,1, \cdots, n ; i=1, \cdots, n)$ are $m \times m$ matrices of functions satisfying the
(1) When $n=1$, excepting the notations, we can treat the same problem without essential change. However, for the notational simplicity, we shall only treat the case where $n \geqq 2$, below.
Received January 26, 1988.

