ON A CONSTRUCTION OF INDECOMPOSABLE MODULES AND APPLICATIONS

By

Koji NISHIDA¹⁾

1. Introduction

One of the main purposes of this paper is to introduce a new method to get a family $\{M_n\}_{n=1,2,\dots}$ of indecomposable modules over a commutative Noetherian local ring R with the maximal ideal \mathfrak{m} , which will be done in Theorem (2.1) when R possesses a finitely generated R-module C of depth_R $C \ge 1$ such that $C \otimes_R \hat{R}$ (R is the completion of R with respect to the \mathfrak{m} -adic topology.) is indecomposable and the initial part of a minimal free resolution of C satisfies certain condition. Each M_n is a finitely generated R-module of dim_R M_n =dim_RCand depth_R $M_n=0$ and if C is Cohen-Macaulay, then M_n is Buchsbaum (see [9] for the definition of Buchsbaum module.). Furthermore $M_n/H^{\mathfrak{o}}_{\mathfrak{m}}(M_n)$ ($H^{\mathfrak{o}}_{\mathfrak{m}}(M_n)$ $= \bigcup_{i\geq 1} [(0): \mathfrak{m}^i]_M)$ is isomorphic to the direct sum of n-copies of C. Hence in this case there are "big" indecomposable R-modules without limit.

Another aim of us is to apply Theorem (2.1) to the Buchsbaum-representation theory in the one dimensional case. We say that a Noetherian local ring R has finite Buchsbaum-representation type if there are only finitely many isomorphism classes of indecomposable Buchsbaum R-modules M which are maximal, i. e. dim_RM=dim R. In [4] S. Goto determined the structure of one-dimensional complete Noetherian local rings R of finite Buchsbaum-representation type under the hypothesis that the residue class field of R is infinite, which will be removed in section 3 of this paper. Our family constructed by Theorem (2.1) has the suffix set of non-negative integers and this enables us to develope the same arguments in [4], not assuming the infiniteness of the residue class field.

Throught this paper R is a Noetherian local ring with the maximal ideal m. We denote by \hat{R} the completion of R with respect to the m-adic topology and $H^{i}_{\mathfrak{m}}(\cdot)$ is the *i*-th local cohomology functor of R relative to m. For each finitely generated R-module M let $\mu_{R}(M)$ be the number of elements in a minimal system of generaters for M and let M^{n} denote the direct sum of n-copies of

¹⁾ Partially supported by Grant-in-Aid for Co-operative Research.

Received May 19, 1988