COMPLETE RIEMANNIAN MANIFOLD MINIMALLY IMMERSED IN A UNIT SPHERE $S^{n+p}(1)$

By

Qing-ming CHENG and Yuen-da WANG

1. Innroduction.

Let M^n be an n-dimensional Riemannian manifold which is minimally immersed in a unit sphere $S^{n+p}(1)$ of dimension n+p. If M^n is compact, then many authors studied them and obtained many beautiful results (for examples [1], [3], [4], [5] and [6]). In this paper, we make use of Yau's maximum principle to extend these results to complete manifolds with Ricci curvature bounded from below.

2. Preliminaries.

Let M^n be an *n*-dimensional Riemannian manifold which is minimally immersed in a unit sphere $S^{n+p}(1)$ of dimension n+p. Then the second fundamental form *h* of the immersion is given by $h(X, Y) = \tilde{\nabla}_X Y - \nabla_X Y$ and it satisfies h(X, Y) = h(Y, X), where $\tilde{\nabla}$ and ∇ denote the covariant differentiation on $S^{n+p}(1)$ and M^n respectively, X and Y are vector fields on M^n . We choose a local field of orthonormal frames $e_1, \dots, e_n, \dots, e_{n+p}$ in $S^{n+p}(1)$ such that, restricted to M^n , the vector e_1, \dots, e_n are tangent to M^n . We use the following convention on the range of indices unless otherwise stated: $A, B, C, \dots = 1, 2, \dots,$ $n+p; i, j, k, \dots = 1, 2, \dots, n; \alpha, \beta, \dots = n+1, \dots, n+p$. And we agree that repeated indices under a summation sign without indication are summed over the respective range. With respect to the frame field of $S^{n+p}(1)$ chosen above, let $\tilde{\omega}_1, \dots, \tilde{\omega}_{n+p}$ be the dual frames. Then structure equations of $S^{n+p}(1)$ are given by

(2.1)
$$d\tilde{\omega}_A = \sum \tilde{\omega}_{AB} \wedge \tilde{\omega}_B, \quad \tilde{\omega}_{AB} + \tilde{\omega}_{BA} = 0,$$

(2.2)
$$d\tilde{\omega}_{AB} = \sum \tilde{\omega}_{AC} \wedge \tilde{\omega}_{CB} - \tilde{\omega}_A \wedge \tilde{\omega}_B.$$

Restricting these forms to M^n , we have the structure equations of the immersion:

$$(2.3) \qquad \qquad \omega_a = 0,$$

(2.4) $\boldsymbol{\omega}_{i\alpha} = \sum h_{ij}^{\alpha} \boldsymbol{\omega}_{j}, \quad h_{ij}^{\alpha} = h_{ji}^{\alpha},$

Received November 2, 1987. Revised March 22, 1988