HOMEOMORPHISMS OF ZERO-DIMENSIONAL SPACES

By

Takashi KIMURA

Dedicated to Professor Yukihiro Kodama on his 60th birthday

1. Introduction.

All spaces considered in this paper are assumed to be compact and metrizable. Let φ be a homeomorphism from a space (X, d) onto itself. Then φ is *expansive* if there is c>0 such that for every $x, y \in X$ with $x \neq y$ there is $n \in \mathbb{Z}$ for which $d(\varphi^n(x), \varphi^n(y)) > c$. Given $\delta > 0$, a sequence $\{x_i : i \in \mathbb{Z}\}$ is a δ -pseudoorbit of φ if $d(\varphi(x_i), x_{i+1}) < \delta$ for every $i \in \mathbb{Z}$. Given $\varepsilon > 0$, a sequence $\{x_i : i \in \mathbb{Z}\}$ is ε -traced by a point $y \in X$ if $d(\varphi^i(y), x_i) < \varepsilon$ for every $i \in \mathbb{Z}$. We say that φ has the pseudo orbit tracing property (abbrev. P.O. T. P.) if for every $\varepsilon > 0$ there is $\delta > 0$ such that every δ -pseudo-orbit of φ can be ε -traced by some point of X.

For a space (X, d) we denote by $\mathcal{K}(X)$ the space of all homeomorphisms of X with the metric $\tilde{d}(\varphi, \psi) = \max\{d(\varphi(x), \psi(x)): x \in X\}$ for every $\varphi, \psi \in \mathcal{K}(X)$. Let $\mathcal{C}(X) = \{\varphi \in \mathcal{H}(X): \varphi \text{ is expansive}\}$ and $\mathcal{P}(X) = \{\varphi \in \mathcal{H}(X): \varphi \text{ has P.O.T.P.}\}.$

In Section 3 we are concerned with the Cantor set C. The Cantor set C is the unique zero-dimensional infinite group. N. Aoki [1] proved that every group automorphism of C has P.O. T. P. M. Sears [6] proved that $\mathcal{E}(C)$ is dense in $\mathcal{H}(C)$, constructing a dense subset \mathcal{A} of $\mathcal{E}(C)$ in $\mathcal{H}(C)$. M. Dateyama [3] proved that $\mathcal{P}(C)$ is dense in $\mathcal{H}(C)$, constructing a dense subset \mathcal{A} of $\mathcal{E}(C)$ in $\mathcal{H}(C)$. M. Dateyama [3] proved that $\mathcal{P}(C)$ is dense in $\mathcal{H}(C)$, constructing a dense subset \mathcal{A} of $\mathcal{P}(C)$ in $\mathcal{H}(C)$. However, for the sets \mathcal{A} and \mathcal{B} above we have $\mathcal{A} \cap \mathcal{B} = \phi$. So it is unknown whether the set $\mathcal{E}(C) \cap \mathcal{P}(C)$ of all expansive homeomorphisms with P.O.T.P. of C is dense in $\mathcal{H}(C)$. In Section 3 we shall prove the following theorem.

THEOREM 1. The set of all expansive homeomorphisms with P.O.T.P. of the Cantor set C is dense in $\mathcal{H}(C)$.

We know [6] that $\mathcal{E}(C)$ is of first category. So $\mathcal{E}(C) \cap \mathcal{P}(C)$ is also of first category.

The convergent sequence is another standard zero-dimensional space, classed with the Cantor set. In Section 4 we shall prove the following theorem.

Received October 22, 1987