A NOTE ON REAL HYPERSURFACES OF A COMPLEX HYPERBOLIC SPACE

By

He-Jin KIM

Introduction.

A Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form. The complete and simply connected complex space form of complex dimension n consists of a complex projective space P^nC , a complex Euclidean space C^n or a complex hyperbolic space H^nC , according as c>0, c=0 or c<0.

Many subjects for real hypersurfaces of a complex projective space P^nC have been studied [1], [4], [5] and [6]. One of which, done by Kimura [6], asserts the following interesting result.

THEOREM K. There are no real hypersurfaces of P^nC with parallel Ricci tensor on which $J\xi$ is principal, where ξ denotes the unit normal and J is the complex structure of P^nC .

A Riemannian curvature of a Riemannian manifold M is said to be harmonic if the Ricci tensor S satisfies the Codazzi equation, that is,

(0.1)
$$\nabla_X S(Y, Z) - \nabla_Y S(X, Z) = 0$$

for any tangent vector fields X, Y and Z, where ∇ denotes the Riemannian connection of M. This condition is essentially weaker than that of the parallel Ricci tensor [2]. From this point of view, Kwon and Nakagawa [5] extends recently the following:

THEOREM K-N. There are no real hypersurfaces with harmonic curvature of P^nC on which $J\xi$ is principal.

Now we are interested in these problems in the case of c < 0, that is, the ambient space is a complex hyperbolic space H^nC . Montiel [7] stated that there are no Einstein real hypersurfaces in H^nC , and classified the pseudo-Einstein real hypersurfaces of H^nC . In this paper, we will prove

Received September 4, 1987.