A NOTE ON THE PROJECTIVE NORMALITY OF SPECIAL LINE BUNDLES ON ABELIAN VARIETIES

By

Akira Ohbuchi

Dedicated to Professor Yukihiro Kodama on his 60th birthday

Introduction.

Let L be an ample line bundle on an abelian variety A of dimension g defined over an algebraically closed field k. It is well known that $L^{\otimes 2}$ is base point free and $L^{\otimes 3}$ is very ample and projectively normal. Moreover we know that

$$\Gamma(A, L^{\otimes a}) \otimes \Gamma(A, L^{\otimes b}) \longrightarrow \Gamma(A, L^{\otimes a+b})$$

is surjective if $a \ge 2$ and $b \ge 3$ (Koizumi [3], Sekiguchi [8], [9]). But in the case of a=b=2, this map is not surjective in general. In this paper we determine the condition of projective normality of $L^{\otimes 2}$ for some ample line bundle L. Our result is as follows.

THEOREM. If L is a symmetric ample line bundle of separable type, l(A, L) is odd and assume that $char(k) \neq 2$, then $L^{\otimes 2}$ is projectively normal if and only if $Bs|L| \cap A[2] = \phi$.

In §1 we prove the above theorem for abelian varieties defined over C. In §2 we give the Mumford's theory of a theta group (Mumford [4], [5]). In §3 we prove the above theorem in general by the theory in §2.

Notations.

char (k): The characteristic of a field k

 f^* : The pull back defined by a morphism f

L: The invertible sheaf associated to a line bundle L

 \mathcal{O}_A : The invertible sheaf of a variety A

 (L^g) : The self intersection number

|L|: The set of all effective Cartier divisors which define a line bundle L

Bs|L|: The set defined by $\bigcap_{D=1}^{L}D$

 $\Gamma(A, L)$: The set of global sections of a line bundle L

l(A, L): The dimension of $\Gamma(A, L)$ as a vector space

Received May 12, 1987.