ON SPAN AND INVERSE LIMITS

By
Kazuhiro Kawamura

1. Introduction.

A compact metric space is called a compactum and a connected compactum is called a continuum. All maps in this paper are continuous. Let $f: X \rightarrow Y$ be a map between continua. Ingram [2] and Lelek [11] defined the span, semispan, surjective span, and surjective semispan of f by the following formulas (the map $p_{i}: X \times X \rightarrow X$ denotes the projection to the i-th factor, $i=1,2$).

$$
\begin{aligned}
& \tau=\sigma, \sigma_{0}, \sigma^{*}, \sigma_{0}^{*} . \\
& \tau(f)=\sup \left\{c \geqq 0 \left\lvert\, \begin{array}{l}
\text { there exists a continuum } Z \subset X \times X \text { such } \\
\text { that } Z \text { satisfies the condition } \tau) \text { and } \\
d(f(x), f(y)) \geqq c \text { for each }(x, y) \in Z
\end{array}\right.\right\},
\end{aligned}
$$

where the condition τ) is:

$$
\begin{aligned}
& p_{1}(Z)=p_{2}(Z) \quad \text { if } \tau=\sigma, \quad p_{1}(Z) \supset p_{2}(Z) \quad \text { if } \tau=\sigma_{0} \\
& p_{1}(Z)=p_{2}(Z)=X \quad \text { if } \tau=\sigma^{*}, \quad p_{1}(Z)=X \quad \text { if } \tau=\sigma_{0}^{*}
\end{aligned}
$$

The span of a continuum X is defined by $\sigma\left(i d_{X}\right)$. The other cases are similar. In the same way, we can define the symmetric span of f by the formula

$$
s(f)=\sup \left\{\begin{array}{l|l}
c \geqq 0 & \begin{array}{l}
\text { there exists a continuum } Z \subset X \times X \text { such that } \\
Z \text { is symmetric (i.e. }(x, y) \in Z \text { iff }(y, x) \in Z) \\
\text { and } d(f(x), f(y)) \geqq c \text { for each }(x, y) \in Z
\end{array}
\end{array}\right\}
$$

It is a mapping version of symmetric span of a continuum due to J. F. Davis [1].
Let $X=\lim \left(X_{n}, p_{n+1}\right)$ be a continuum, where $p_{n+1}: X_{n+1} \rightarrow X_{n}$. Ingram [2] and [4] showed that $\sigma(X)=0$ if and only if there exists a cofinal subsequence $\left(n_{i}\right)_{i \geq 1}$ such that $\underset{j}{\lim } \sigma\left(p_{n_{i} n_{j}}\right)=0$ for each $i \geqq 1$. In section 2 of this paper, we will prove a mapping version of this theorem. H. Cook proved essentially that the symmetric span of the dyadic solenoid is zero ([1], p. 134), while its span is positive. The author wishes to thank to the referee for pointing out this fact. In section 3, we generalize this to the poly-adic solenoid. Let f and $g: X \rightarrow Y$ be maps. $d(f, g)$ denotes $\sup \{d(f(x), g(x)) \mid x \in X\}$.

[^0]
[^0]: Received March 12, 1987.

