SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 WITH HARMONIC CURVATURE

By

Jung-Hwan KWON*

§0. Introduction.

A Riemannian curvature tensor is said to be *harmonic* if the Ricci tensor R_{ji} satisfies the Codazzi equation, namely, in local coordinates, $R_{jik} = R_{jki}$, where R_{jik} denotes the covariant derivative of the Ricci tensor R_{ji} . Recently Riemannian manifolds with harmonic curvature are studied by A. Derdziński [1], H. Nakagawa and U-H. Ki [4], [5], [6], E. Ômachi [9], M. Umehara [6], [10] and others.

The purpose of the present paper is to study submanifolds with harmonic curvature admitting almost contact metric structure in a Euclidean space and to prove the following:

THEOREM. Let M be a (2n+1)-dimensional complete simply connected semiinvariant submanifold in a (2n+4)-dimensional Euclidean space. If M has harmonic curvature and of constant mean curvature and if the distinguished normal is parallel in the normal bundle, then M is isometric to one of the following spaces;

 E^{2n+1}, S^{2n+1} or $S^{2n-r+1} \times E^r$, $(r \leq 2n-1)$.

The author wishes to express his hearty thanks to the referee whose kind suggestion was very much helpful to the improvement of the paper.

§1. Preliminaries.

Let \overline{M} be a (2n+4)-dimensional almost Hermitian manifold covered by a system of coordinate neighborhoods $\{U: X^A\}$. Manifolds, submanifolds, geometric objects and mappings discussed in this paper are assumed to be differentiable and of class C^{∞} . Denote by G_{CB} components of the Hermitian metric tensor, and by F_B^A those of the almost complex structure F of \overline{M} . Then we have

(1.1) $F_C{}^B F_B{}^A = -\delta_C{}^A,$

$$F_c{}^E F_B{}^D G_{ED} = G_{CB},$$

Received February 19, 1987. Revised July 6, 1987.

^{*} This research was partially supported by KOSEF.