TSUKUBA J. MATH. Vol. 12 No. 1, (1988) 231-233

ISOMETRIC IMMERSION OF RIEMANNIAN HOMOGENEOUS MANIFOLDS

By

Tsunero TAKAHASHI

1. Introduction.

Bang-Yen Chen has introduced the notion of isometric immersion of finite type and proved that an equivariant isometric immersion of a compact Riemannian homogeneous manifold into a Euclidean space is of finite type [1].

In this paper we will prove the following theorem.

THEOREM. Let M be a compact connected Riemannian homogeneous manifold with irreducible isotropy action. For an equivariant isametric immersion f of M into a Euclidean space E^N (considered as a Euclidean vector space) there exist a finite number of vector subspaces E_0 , E_1 , \cdots , E_τ of E^N , isometric immersions f_i of 1-type of M into E_i ($i=1, \dots, r$), constant vector v_0 in E_0 and positive constant a_1, \dots, a_τ so that

(1) $E^N = E_0 + E_1 + \dots + E_r$ (Euclidean direct sum)

(2)
$$f = v_0 + a_1 f_1 + \dots + a_r f_r$$

REMARK. a_1, \dots, a_r satisfy $\sum_{i=1}^r a_i^2 = 1$.

2. Proof of Theorem.

Let M be a compact connected Riemannian homogeneous manifold with irreducible isotropy action. Let $G=I_0(M)$ be the identity component of the group of all isometries of M. G is a compact Lie group and acts on M transitively.

Let f be an equivariant isometric immersion of M into a Euclidean space E^N . Then there exists a Lie homomorphism ϕ of G into the isometry group $I(E^N)$ of E^N such that

$$f(g(p)) = \phi(g)(f(p))$$

for any $g \in G$ and $p \in M$.

Since an isometric transformation of E^N is decomposed into a product of an orthogonal transformation and a parallel translation, we have a Lie homomorphism

Received April 21, 1987.